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Tropical cyclones (in the last 150 years)
(D'Asaro et al., 2011)

Figure 1. Worldwide tropical cyclone tracks through 2006 from the National Hurricane Center and
the Joint Typhoon Warning Center, spanning nearly 150 years. Each track is colored by storm intensity
using the Saffir-Simpson storm categories (Tropical Depression, Tropical Storm, and Tropical Cyclone
categories 1 [wind 33-42 m s™'] to 5 [wind > 70 m s7']). The tracks show that the regions of most

freauent and intense storms are in the western North Pacific. Imaee courtesv of NASA Earth Observator



Why are track forecasts important?

« The forecasts of intensity, rainfall, and storm
surge become less meaningful if the track
forecast is incorrect.

« Slowly moving TCs cause torrential rainfall.
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Slowdown trend under global warming

« Slowdown trend is expected in midlatitudes
under the global warming condition.
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TC forecast errors by RSMC Tokyo

* Track: Decreasing over the last several decades.

* Nevertheless, 72-h track forecast errors are still
200 km on average.

Track forecast errors (1982- 2020)
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Forecast busts

« In approximately 1% of all cases, 3-day forecast
errors exceed 1000 km.

« It Is important to understand the reason why.

Track forecast error (km) (FT72, 2012-2017)
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Outline

« TC track is largely controlled by the synoptic
scale flow but affected by B-gyre effect,
asymmetric diabatic heating, and other factors.

 In this lecture, we briefly explain these factors.



Flow v.s. TC track



Synoptic scale flow

 As a first-order approximation, TC motion is like
the motion of a toy boat following river flow.

« A flow controlling TC motion has a synoptic
scale such as midlatitude westerly, subtropical
high, easterly wind, and monsoon.
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Comparing TC motion to winds within a
certain radius

Latitude > 20°N Latitude < 20°N
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Optimum steering flow layer

TROPOSPHERIC LEVELS (hPa)
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Difference b/w track and steering flow

« TC motion is slightly deviated from the steering
flow (~2 m/s).

* The direction of deviation is west-northward.

TC motion minus steering flow

GT: TCs located north of 20N :
LT: TCs located south of 20N (Chan 2010; Carr
- and Elseberry, 1990)




Short summary: Flow v.s. TC track

« As a first-order approximation, TC motion is like
the motion of a toy boat following river flow.

« Synoptic scale phenomena such as midlatitude
westerly, subtropical high, easterly wind, and
monsoon largely control the TC motion.

« Optimal steering flow
»5-7° radial mean or radial-band mean
»500-850 hPa mean
(if @ TC is strong, 300-850 hPa mean)
« TC track is deviated from steering flow by 2 m/s.

« Note: The steering flow is not fully composed of
large-scale wind. Steering flow may include the
contributions of TC and small-scale features.




B-gyre concept



Nondivergent vorticity equation
« Consider the following in pressure coordinates,
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Nondivergent vorticity equation (contd.)

 If we can neglect the divergence term, tilting
term, and friction term, the equation is simplified.
(Later on, I will introduce examples in which the
divergence term is not negligible)

 Since the Corioris parameter f depends only on a
latitude, Of /ot +uof / Ox = Q. Therefore,
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B-gyre effect

low f+C air

« High f to the north and high {near the TC center.

« TC wind transports high 7+ air to the west and
low f+¢ air to the east

o It results in TC motion through two pathways
»Increase of vorticity in the west (westward motion)
»Advection due to the wind (northward motion)



Sensitivity of B-gyre on size and intensity

 The impact of a B-gyre becomes larger for a
large TC (Fiorino and Elsberry, 1989).

« Northward component becomes stronger for a
strong TC (Chan and Elsberry, 1987).
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Short summary: B-gyre concept

 In addition to large-scale flow, a TC can move
northwestward by itself through the
conservation of absolute vorticity ¢ + f.

- The mechanism is that a high ¢ + f air is
transported to the west due to the cyclonic wind.

« The impact is large for a large TC.

« It may explain the difference of 2 m/s between
the TC motion and steering flow (at least partly).

« Note: It is almost impossible to estimate the
iImpact of B-gyre for a TC in the real world.



Asymmetric diabatic
heating



Asymmetric convection due to VWS

« Under a vertical wind shear (VWS;
environmental upper-level wind minus low-level
wind), convections are active from the
downshear to downshear-left.

« In a downshear side, the low-level convergence
and upper-level divergence is strong
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Asymmetric diabatic heating impacting
on TC track

« Wu and Wang (2000) showed that asymmetric
diabatic heating can modify the TC track.

» The vorticity is generated beneath the strong
heating (downshear to downshear-left in VWS).

« In a vorticity equation, the divergence term is
not negligible under the VWS.
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Vorticity equation and TC motion

« A TC can be regarded as a region with large vorticity.
« Therefore, the TC motion corresponds to the wavenumber-1
component of vorticity tendency.
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Example: Track of TC Fengshen (2006)

« A northward bias is sometimes seen in model forecasts.

« In case of TC Fengshen (2006), the nonhydrostatic
NICAM model successfully reproduced the TC track.

« Active convection was in the downshear.
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Diagnosis with a vorticity equation

« Dominant terms in a vorticity equation are horizontal
advection term and divergence (stretching) term.

 Vorticity increases in the northwest correspoinding to the
northwestward motion.

 The horizontal advection makes a TC move northward,
while the divergence term makes it move southwesward.
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Short summary:
Asymmetric diabatic heating

 Vertical wind shear (VWS; upper-level wind
minus low-level wind) gives the active convection
from the downshear to downshear-left.

« The TC motion is modulated toward the
maximum direction of active convection. From a
vorticity equation viewpoint, it is explained by a
divergence (stretching) term that is not negligible
comparing with horizontal advection.

« In some cases, NWP models show the northward
bias in TC track forecasts. It might be explained
by the insufficient representation of asymmetric
diabatic heating associated with the VWS,



Other factors



Idealized simulation for terrain effect
* No background flow except for B-gyre effect.

« For a give setup, westward wind is blocked by
Taiwan terrain. It induced gyres leading to the
northward deflection.
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A large TC can retreat subtropical high
« With the increase of initial storm size,

subtropical high tends to withdraw.

« Large TCs located on the southwestern edge
N turn northwards earlier.
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Interaction with monsoon gyre (MG)

« Three types: northward (with or without a sharp
turn) or westward path.

« Northward path with a sharp turn tends to be
simulated when a MG is strong and deep, a TC
IS weak, and a TC is relatively closer to MG
center.

— Idealized simulation with WRF
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Fujiwhara effect

« Binary TCs cyclonically rotate each other if they are

separated by less than 1500 km.

« Recent studies show that the motion of binary TCs
separated by 1000-2000 km are substantially modulated

by asymmetric diabatic heating.
2000 1

1000 -

-1000 1

—2000 1

DOBR

D14R 3| 3
D12RB3I133

D10R33133
D12R33133

D 4R 3133

D 6 3133

D16R33133 kmwma

D10R33133

(a)

-2000 —-1000

1000

2000

(Lee et al., 2023; Ito et al., 2023)



Three-dimensional Fujiwhara effect

(1) Upper-level anticyclonic circulation due to TC outflow

(Lee et al., 2023; Ito et al., 2023)



Concluding remarks

« TC motion has been traditionally believed
to follow the large-scale flow, which is
acceptable as a first order approximation.

« However, the actual TC track is modulated
by B-gyre, asymmetric diabatic heating,
topography, and other factors. A large TC
even modifies a synoptic scale flow.

« Therefore, it is important to understand
not only the large scale feature but also
other factors and TC characteristics in
terms of track forecasts.
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