

Radar-Based Nowcasting and Verification Techniques

Erik Becker

Research Scientist

Typhoon Committee Roving Seminar

13 November 2019

Lecture Topics

Topic B – Rain gauge and radar data processing for QPE/QPF

Goal: Scrutinise the radar processing chain for accurate QPE and QPF

- 1. Radar and Rain-Gauge Data Quality and Processing
- 2. Radar Precipitation and Rain-Gauge Adjustment Techniques
- 3. Radar-Based Nowcasting and Verification Techniques

Reading Material:

- Wang, Yong, Estelle De Coning, Wilfried Jacobs, Paul Joe, Larisa Nikitina, Rita Roberts, Jianjie Wang, et al. 2017. "Guidelines for Nowcasting Techniques." WMO. https://library.wmo. int/opac/doc_num.php?explnum_id=3795
- Pierce, Clive, Alan Seed, Sue Ballard, David Simonin, and Zhihong Li. 2012. "Nowcasting." In *Doppler Radar Observations - Weather Radar, Wind Profiler, Ionosperic Radar, and other Advanced Applications*, by Joan Bech and Jorge Luis Chau, 97-142.

Examples from SAWS and MSS Radar networks.

Outline

Radar Precipitation

- Intro and outline
- Nowcasting
 - Object based tracking
 - Field Advection
 - Growth and Decay (stochastic and ANN model)
 - NWP
 - Blending
- Verification
 - CT performance diagram
 - Spatial (FSS, SAL, etc)
- Some Operational considerations
- Summary

Useful Tools

PYTHON:

- **LROSE**: https://github.com/NCAR/lrose-core
- **pySTEPS**: https://github.com/pySTEPS
- SwirlsPy: https://docs.com-swirls.org/

R:

- SpatialVx package (Spatial Verification Tools)
- **Verification** package (Standard Verification Tools)

Nowcasting

Thunderstorm Identification Tracking And Nowcasting:

- **TITAN** (NCAR). https://github.com/NCAR/lrose-titan
- Identifies thunderstorm through single threshold
 - Typically 30dBZ
- Dual Threshold also possible (Useful for squall lines)
- Storm Properties can be calculated:
 - Volumetric centroid
 - Volume (km3)
 - Mean area (km2)
 - Precipitation flux (m3/s)
 - Mass (ktons)
 - Max, Mean dBZ
 - Etc... (Many more)

Bloemfontein - 24 Feb 2015

- Convective Classification
- Texture algorithm:

 $texture = \sqrt{sdev(dbz^2)}$

Improves hail metrics and warnings

Threshold only 30dBZ

Threshold (30dBZ) + convective classification

102.8E 103E 103.2E103.4E103.6E103.8E 104E 104.2E104.4E104.6E104.8E 105E

Need at least 2 time steps

- Matching using overlaps and optimization.
- Handles storm merging and splitting. •

- Extrapolation for forecasting
- Assumes:
 - Storm move in straight line
 - Linear trend for growth and decay
 - Random departures from above behaviour
- Weight linear fit on time-history of storm. (More is better)

- Experimenting with cascading for larger features
- Merge tracks weighted average of parent tracks
- Split the forecast is a copy of the history of the parent.

- Possible to isolate convective cores in large systems such as MCC
- Some Bright Band interference

2018-07-01 04:00:00 - TITAN cell tracking (+30min) - LT: 2018-07-01 12:00:00

Field Advection (Extrapolation):

- Motion vectors calculated from current and previous radar images. ٠
- Results can be noisy due to temporal variability of reflectivity. ٠
- Using additional time steps can help smooth vectors.
- Linear or Rotational flow. ٠
- Methods (pySTEPS, SwirlsPy): ٠
 - COTREC (SWIRLS)
 - Vibrational Echo Tracking (VET) (MAPLE)
 - **Optical Flow:** —
 - Open CV (Lukas-Darts
 - Rover
- Semi-Lagrangian backward interpolation scheme to extrapolate . reflectivity.
- Does not consider growth and decay.
- Sensitivity to settings, weather type and domain. ٠
- Consider computation efficiency. ٠
- RainyMotion, constant motion vector for domain (Benchmark) ٠

$$D_t Z = u \frac{\delta Z}{\delta x} + v \frac{\delta Z}{\delta y} + \frac{\delta Z}{\delta t} = 0$$

Solve using Minimize Least Squares

Motion vector calculations

UWND

VWND

- Sensitivity study on optical flow parameters: ٠
 - Box window size —
 - Interpolation methods —
 - Max speed —
 - Etc.
- Different weather types may require different ٠ settings

Inverse Distance Weighting

Nearest

Neighbour

Nowcasting Methods: Optical Flow Extrapolation

Forecast

VALID TIME: 2019-05-08 01h30m00s UTC - 2019-05-08 09h30m00s LT FCST (T+0): 2019-05-08 01h30m00s UTC - 2019-05-08 09h30m00s LT

- 3 hour extrapolation
- Advection appears to be slower than the observed

Challenge in the Tropics

Extrapolation at 0430 UTC (T-30min – T+120min)

2018-07-01 04:30:00 - (T-30min) - LT: 2018-07-01 12:30:00

TITAN cell tracking at 0400 UTC – 0500 UTC (30min forecast track)

2018-07-01 04:00:00 - TITAN cell tracking (+30min) - LT: 2018-07-01 12:00:00

Growth and Decay

- Rainfall has a scaling structure in both space and time
- Multiplicative cascades can model this behaviour
- The Weather and Climate, Lovejoy and Schertzer, 2013, Cambridge University Press
- Statistical Approach (Stochastic Noise)

pySTEPS - **Decomposition**

- Cascade Decomposition
- Optical Flow vectors for each cascade level.
- Semi-Lagrangian Extrapolation.
- Growth and decay:
 - Large Scale features to persist.
 - Stochastic noise.
- Fourier Domain
- Auto-Regressive Model

Stochastic Noise Generation:

Multiplicative Cascades:

- 3 hour forecast
- Stochastic noise makes is possible to produce ensemble
- Probabilistic forecast now possible
- Will require a study on how to approach different weather systems

Artificial Neural Network (ANN) Nowcaster

Deep learning algorithm

Output: Predicted rada

Predicted radar maps for 0-3 hours, depending on the weather systems

- Why DLM ?
- Learn the nonlinear characteristics in real time
- Provide the possibility of predicting thunderstorms before they appear from radar

Artificial Neural Network (ANN) Good Case

DPSRI (dBR)

14:05 / 23-Oct-2018 Changi 150.00 mm/h 60 13 mm/h 24.10 mm/h 9.66 mm/h 3.87 mm/h 1.55 mm/h 0.62 mm/h

> 0.25 mm/h 0.10 mm/h

DFT 4 Time sampling Variable 1200 Hz 120 km

dpsri_120km.dpsri

0 500 km/pixe

a=300, b=1.40

PseudoSRI

Radar Data

0.5 km

Pdf File

Range

7R 2. SRLH

Data:

Resolutio

Alg type

Rainbow® SELEX-SI

Clutter Filter:

	Intensity	Movement	Spatial Distribution
6/10/2018	Under-forecast	OK	Ok
7/10/2018	NA	NA	NA
8/10/2018	Under-forecast	OK	ОК
11/10/2018	Under-forecast	OK	Under-forecast
12/10/2018	Under-forecast	OK	Under-forecast
16/10/2018	Over-forecast	Wrong	Over-forecast
23/10/2018	Ok	Ok	Ok
25/10/2018	NA	NA	NA
27/10/2018	NA	NA	NA
28/10/2018	NA	NA	NA
29/10/2018	Under-forecast	OK	Under-forecast
10/11/2018	Under-forecast	OK	Ok
11/11/2018	Under-forecast	OK	Under-forecast
28/11/2018	NA	NA	NA
1/12/2018	Ok	Wrong	Under-forecast
2/12/2018	Under-forecast	OK	Under-forecast
5/12/2018	Ok	OK	Under-forecast
7/12/2018	NA	NA	NA
8/12/2018	NA	NA	NA
10/12/2018	Under-forecast	OK	Under-forecast
11/12/2018	Under-forecast	OK	Under-forecast
12/12/2018	Under-forecast	Wrong	Under-forecast
19/12/2018	NA	NA	NA
20/12/2018	NA	NA	NA
31/12/2018	Under-forecast	OK	Under-forecast
5/1/2019	NA	NA	NA
8/1/2019	Under-forecast	OK	Under-forecast
13/1/2019	NA	NA	NA

- Current setup not ideal. ٠
- ANN will require a different processing approach and thus needs to be redeveloped.
- ANN requires excessive amounts of data.
- Needs this info to model storm initiation, evolution and movement.

Contribution: WSD

Numerical Weather Prediction (NWP)

Considerations:

- Domain Size
- Initial condition for regional model
- High resolution
 - Convective resolving
 - Urban area (land use)
- Data Assimilation
 - 3D-VAR or 4D-VAR
- Cycling (Cold vs Warm start, Spin-up)
- Forecast length (typical 48 hour for regional domain)
- For nowcasting, important to get your precipitation, humidity, winds and temperature observation right.
- Accurate initial conditions one of the biggest problems

Regional version of Met-Office Unified Model - SINGV 1.5km

NWP – High Resolution Urban Model for Singapore

- Urban Model nested domain is 180 km x 180 km in horizontal and extends up to 40 km up in the atmosphere, centred over Singapore.
- Initial and boundary conditions come from ECMWF NWP model.

Urban morphology and land-use

- Morphological parameters W/R, H/W, H are calculated from 2D topographic data provided by Singapore Land Authority (LOD2).
- ESA CCI land-use data (~ 300 m) with some modifications making it more appropriate for Singapore.

Future Work:

- Model geared more towards a nowcasting setup:
- Hourly cycle (Warm start)
- Data Assimilation (3D-VAR):
 - Himawari-8 radiances [AMV's]
 - Radar derived rain-rates
 [Radial Velocities]
- Forecast range up to 6 hours
- High Resolution (300m) Nested

NWP – South Africa Mesoscale Modelling Experiment

- Investigating a convective scale model run at 300m over ORTIA
- Nesting Suite vn10.4 (upgrade to vn10.6) dynamically downscaled to regional domain
- Regional domain with ORTIA at center (-26.136S, 28.241E)
- Tropical configuration with additional moisture conservation
- Initialized by GA (Global Atmosphere) at 17 km resolution
- Parent domain: 1.5 km resolution (300 x 300 grid points)
- Child domain: 300 m resolution (300 x 300 grid points)
- Vertical resolution of 70 levels; model top at 38.5 km
- Lead-time 36-hours but initialized at 00, 06, 12 and 18 UTC to compensate for spin-up which then equates to 24-hours forecasts.

High Resolution Mesoscale Modellin

- Convective scale model (300 m) using the UK Met Office Unified Model
- Investigating a convective scale model run at 300m over ORTIA

- Model simulations for 2016-11-02
- Storm moved over OR Tambo Int. Airport – Flooding of airport access roads and parking structures
- Severe impact on airport operations
- Red (1,5 km) & Purple (300 m)
- 300x300 (shaded) & 600x600 (nonshaded)
- Black circle ORTIA aerodrome

Unified Model (300m)

Information courtesy Stephanie Landman

Unified Model (300m)

Information courtesy Stephanie Landman

Radar and NWP Blending BoM – STEPS system

- Need to merge Radar with NWP to include dynamical evolution of the atmosphere
- NWP downscaled to be statistically equivalent to rain analysis
- Weight are calculated from the expected skill (variance) of the advection and NWP forecasts

Blending

Flooding event at forecast time.

Radar Time: 2018-10-10 08h45 UTC NWP initialisation time: 2018-10-09 12Z

SINGV-DS 1.5km

Forecast Time: 2018-10-10 10h00 UTC

Advection

Blend

103.2E 103.4E 103.6E 103.8E 104E 104.2E 104.4E 104.6E 104.8E

VALID TIME: 2018-11-10 10k00m00s UTC NWP PRECIP - SINOV DS (5m)

Obs Radar

0.5

85 70

45

Radar Nowcasting: Future Work

• Goal: Blending

- Sensitivity study with nowcasting parameters
- Improve on verification technique.
 - Compensate for domain
 - Classification of dBZ

Fig. 1. A schematic diagram after Browning (1980) conceptualizing the relationship between forecasting methodology, skill and forecast range.

Verification

Why Verify?

To answer questions on:

- Model performance with forecasting the weather (location, type, etc.)
- Administrative (choice of model / continuous monitoring)
- Scientific understanding (improve model dynamics/parametrization)
- Economic (Disaster management / Decision support)

References:

- CAWCR verification website (Beth Ebert): <u>http://www.cawcr.gov.au/projects/verification/</u>
- Jolliffe IT and Stephenson DB (2011) Forecast Verification: A Practictioner's Guide in Atmospheric Science (2nd Ed). Wiley.
- Wilks DS (2011) Statistical Methods in the Atmospheric Sciences (3rd Ed). Academic Press.
- Casati, B., Wilson, L. J., Stephenson, D. B., Nurmi, P., Ghelli, A., Pocernich, M., Damrath, U., Ebert, E. E., Brown, B. G. and Mason, S. (2008), Forecast verification: current status and future directions. *Met. Apps*, 15: 3–18.
- WMO research programme: https://www.wmo.int/pages/prog/arep/wwrp/new/Forecast_Verification.html

What makes a good forecast?

- A forecast must have Consistency, be of good Quality and be of Value
- Need to determine or VERIFY that a forecast has these qualities.
- Forecast Attributes:
 - Bias (deviate from the mean observations)
 - Association (linear relationship or correlation),
 - Accuracy (difference from the observed error),
 - Skill (compared to some reference, climatology or persistence),
 - Reliability (agreement between observed and forecast values),
 - Resolution (resolve events into subset of events),
 - Sharpness (extreme values),
 - Discrimination (higher prediction frequency for specific outcomes),
 - Uncertainty (variability)
- Ground Truth Normally from observations or reanalysis. Consider the limitations of the observation.

Verification Methods

Standard:

- Dichotomous (yes/no) forests
- Multi-category forecasts
- Continuous variable
- Probabilistic forecasts (Brier Skill Score)

Diagnostic (scientific):

- Spatial Forecasts
- Probabilistic forecasts, including ensemble prediction systems (Rank Histogram)
- Rare events (EDS, SEDI, SEDS)

Verification - Histograms

- Univariate Statistics; Good place to start.
- Frequency histograms
- Separate into different thresholds
- Good way to gee how model performs at different intensities

Histogram of Rain Intensity over the Simulation Domain (FMA)

Performance Diagram (based on CT scores)

0.0

0.2

0.4

Success Ratio

0.6

0.8

1.0

Double penalty problem when comparing grid cell to grid cell

Which is the better forecast?

From Baldwin 2002

CT Score for grid comparison

Verification Measure	Forecast #1	Forecast #2
	(smooth)	(detailed)
Mean absolute error	0.157	0.159
RMS error	0.254	0.309
Bias	0.98	0.98
CSI (>0.45)	0.214	0.161
GSS (>0.45)	0.170	0.102

Neighbourhood Techniques

• Define Domains of interest (Scale dependent)

Observed

Spatial Verification Approaches

- To address limitations of traditional approaches
- Goal is to provide more useful information about forecast performance

Fractions Skill Score (FSS)

Fractions Skill Score_(n) =
$$1 - \frac{MSE_{(n)}}{MSE_{(n)n}}$$

Roberts, N. M. and Lean, H. W. (2008)

 $MSE = \frac{1}{N} \sum_{i=0}^{N} [F_i - O_i]^2$ $MSE_r = \frac{1}{N} \sum_{i=1}^{N} [F_i^2 + O_i^2]$

n = Length scale

Length scale are selected so that n x n grid box doubles in size with each iteration (i.e. $2 \text{ km} \rightarrow 270 \text{ km}$)

 $\leftarrow \text{ length scale 5 } \rightarrow$

Back

TITAN FSS

- FFS Scores for TITAN cell tracking
- 3 day period 2018-11-09 to 2018-11-11
- TITAN (blue) compared to Persistence (red)
- 10th, 50th and 90th percentile plot for the evaluation period
- Length scales 4km, 16km and 64km

FSS Scores Nowcasting systems

Structure-Amplitude-Location (SAL)

Wernli et al., Mon. Wea. Rev., 2008

- 1. Is the domain average precipitation correctly forecast? A = 0.21
- 2. Is the mean location of the precipitation distribution in the domain correctly forecast? L = 0.06
- 3. Does the forecast capture the typical structure of the precipitation field (e.g., large broad objects vs. small peaked objects)?
 S = 0.46

(perfect=0)

Mode – SpatialVx

SWFDP Guidance Object, Spatial & Gridded Verification | 20100101 : Day 1

PAIR	FCST	OBS	CENT	AREA	COMB	DIFF	AGREE	DIST BTW CLUST
1	237	588	12.54	99	726	627	88.6%	402.95 km
2	201	429	10.71	120	510	390	88.8%	337.39 km
3	343	680	19.22	51	972	921	74.5%	501.61 km
4	263	195	8.59	17	441	424	81.5%	216.46 km
GUIDANCE AREA(S)						H	DRO-E	STIMATOR

GUIDANCE AREA(S)

MAX LOC SWFDP HE SWFDP+HE PERC = 14%

Grid Size = 0.25° : number of grids = 25777 | Guidance | H-E

Nun	nber of g	5 mm		106	5	3082				
Ave	rage Rain	over	domain			~		19.124	6	
>=	25 mm	*10°)		0.665625		1.92625				
Max	imum Ra	infall O	bserved	(mm)		~		280.83	2	
Spa	Spatial Correlation						0.174	197		
VERIF T	ECHNIQU	E HITS	MISS	FALSE	G	SS	POD	FRATE	RATIO	HSS
MODE (OBJECT	287	2048	755	0	.03	0.12	0.07	0.72	0.06
R Spat	ialVx	5	37	0	0	.05	0.05	0.00	0.00	0.09
Grid Bo	xes	424	2658	641	Ν	A	0.14	0.03	0.60	0.15
Extreme Verification (Gridded)							*			
EDS SEDS EDI SEDI]			S *50	uth Afri	can 🏥	53
0.03]			9 we	ather Ser	vice V				
				-			604	001 Certified Orgo	nisation W	MO

PAIR	FCST	OBS	CENT	AREA	COMB	DIFF	AGREE	DIST BTW CLUST
1	237	588	12.54	99	726	627	88.6%	402.95 km
2	201	429	10.71	120	510	390	88.8%	337.39 km
3	343	680	19.22	51	972	921	74.5%	501.61 km
4	263	195	8.59	17	441	424	81.5%	216.46 km

VERIF TECHNIQUE	HITS	MISS	FALSE	GSS	POD	FRATE	RATIO	HSS
MODE OBJECT	287	2048	755	0.03	0.12	0.07	0.72	0.06
R SpatialVx	5	37	0	0.05	0.05	0.00	0.00	0.09
Grid Boxes	424	2658	641	NA	0.14	0.03	0.60	0.15

Extreme Verification (Gridded)								
EDS	SEDS	EDI	SEDI					
0.03	0.29	0.29	0.30					

Information courtesy Stephanie Landman

www.ral.ucar.edu/projects/icp/SpatialVx/

Operational Requirements

Operational: Considerations

- Data point for incoming data (Availability, Latency).
- Data Format (HDF5, RB5, IRIS, NETCDF, MDV, etc.)
- Distinguish between online/offline data.
- Distinguish between research/operational.
- Processing of data to radar, nowcasting, verification, etc. type products (Server, HPC).
- Archiving and Database management.
- Visualisation (Webpage, Software).
- House Keeping.

Summary

Scrutinise the radar processing chain for accurate QPE and QPF:

- Data Acquisition
- Data Quality Monitoring
- Data Quality Control
- Data Processing
- QPE and Rain Gauge adjustments
- Nowcasting:
 - Object based tracking
 - Field advection
 - Growth and Decay (Statistical and Machine Learning Methods)
 - NWP
 - Blending for seamless nowcasting
- Verification:
 - Operational
 - Scientific
- Operational Considerations (Team Effort)

Thank You Questions?

Erik_BECKER@nea.gov.sg