

Radar and Rain-Gauge Data Quality and Processing

Erik Becker

Research Scientist

Typhoon Committee Roving Seminar

11 November 2019

Lecture Topics

Topic B – Rain gauge and radar data processing for QPE/QPF

Goal: Scrutinise the radar processing chain for accurate QPE and QPF

- 1. Radar and Rain-Gauge Data Quality and Processing
- 2. Radar Precipitation and Rain-Gauge Adjustment Techniques
- 3. Radar-Based Nowcasting and Verification Techniques

Reading Material:

- Doviak, Richard J, and Dusan S. Zrnic, 1993, *Doppler Radar and Weather Observations*, Second Edition, San Diego, Academic Press, Inc., 562pp
- Rinehard, R. E., 2004, *Radar For Meteorologists*, Fourth Edition, 2004
- Rauber, Robert & Nesbitt, Stephen. (2018). *Radar Meteorology: A First Course*. 10.1002/9781118432662.

Examples from SAWS and MSS Radar networks.

Outline

Radar Data Quality

- Network Design (Attenuation)
- Radar Data Quality Monitoring
- Signal Processing (Second Trip)
- Radar Data Quality Control
 - Reflectivity
 - Velocity
 - QI
- Radar Data Processing (Composite)
- Rain Gauge Quality Control

Useful Tools

- wradlib: wradlib.org/tag/python
- **PyART**: arm-doe.github.io/pyart/
- **rack**: baldrad.fmi.fi/software/rack/doc/rack/html/index.html
- **Baltrad**: git://git.baltrad.eu/
- LROSE: https://github.com/NCAR/lrose-core

Each radar/network is unique. It will take some investigation into what works best.

Radar Network Design

Singapore Radar Network

- Long Range Scan = 480 km
- Changi = 125km; extended to 250 km
- Seletar = 120km; extended to 240 km

MSS Radar Network:

- Changi S-band (Blue)
- Seletar C-band (Red)
- 1° beam width
- Doppler, Dual-Polarised
- Limitation associated with:
 - C-band; attenuation, RLAN
 - S-band; Drizzle
- Data quality starts with network design and implementation

Radar Data Quality: Changi & Seletar Comparison

RADAR: QC'ed data Range: 125km Products: CMAX

COMPARISON: C-band and S-band

- Attenuation
- Beam Blockage
- Bright Band

A radar in the WEST of Singapore could potentially provide good data for Sumatra squall events.

Seletar: C-band

Changi: S-band

Radar Quality Monitoring

What are you working with?

- A Dual-Polarized Doppler Weather Radar will typically produce several radar moments
- What is the quality like?
 - Relative term that depends on purpose of radar
 - TDWR, QPE, DA, etc.
- Quality in measurement can be divided into 2 categories:
 - On-site: Radar related
 - Off-site: Atmosphere related

Solar Power (dB) PPI (dBuZ) East Londor 50.0 dB2 Time (Day) 54.0 dB2 48.0 dB2 42.0 dBZ 36.0 dB2 July - 2017 August - 2017 30.0 dBZ 10.0 dBZ 40 -5.0 dB2 FRM.no 0 750 Hz / 500 H 200 km [deg] 0.5 [deg] 0.5 0.5 deg Radar Data offset [offset | o 0 ю - Ģ 9 0 ۰Q Ь -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 azimuth offset [deg] azimuth offset [deg]

Antenna alignment (TRUE NORTH)

- Apparent beam width
- **Received Power**
- **Dual-Pol monitoring** possible

- Data: January to December 2017 ٠
- 7 day rolling average due to limited sun spike hits.
- Down time end July due to system upgrade. ٠

Dominion Radio Astrophysical Observatory (DRAO, Canada)

→ WSSS
→ DRAC#Ref

-100

-105 er [dBm]

-110

15

1.5

Average Daily Received Solar Power - 2017

Calibration Monitoring - Sun spike

Sun Hits over a 3 Month period:

• Antenna alignment to true North

Monitor over 30 day period:

- Received solar power
- Angular bias
- Apparent beam width
- Number of solar hits per day

Example – Radar/Satellite Comparison

Radar Composite overlaid with MSG convective RGB

Clear Durban radar is not aligned to TRUE North

Calibration Monitoring - Sun spike

Example - Calibration

Calibration: Best Practices

Parameter	How to Conduct	Recommended Frequency	
Transmitting frequency	Counter, frequency meter, or spectrum analyzer	Daily	
Pulse shape	Crystal detector and oscilloscope	Weekly	
Transmitted spectrum	Spectrum analyzer	Once a year, unless transmitted signal changes	
Transmitted power	Power meter	Daily	
Transmitted power stabil- ity	BITE	Continuous	
Receiver calibration	Signal generator	Weekly	
Receiver calibration stability	BITE	Once every scan	
Antenna orientation	SSU	Quarterly	
Antenna return loss (VSWR)	Power meter	Weekly	
Corner reflector	Fixed setup as in Section 3.1.1	Continuous when possible	
Sphere calibration	Tethered or free-floating sphere, depending on logistics	Once a year	
Z_{dr} calibration, vertical- looking scans	Section 3.3.1	When suitable precipitation occurs overhead	
Z_{dr} calibration, solar measurements	Solar measurements	Can be done routinely every day.	
Solar calibration monitor- ing		Can be done very regularly and frequently	
Ground target monitoring	Routine or special scans	Can be done every scan if target is rou- tinely visible	
Calibration campaign	As described in Section 2, including standard-gain horn measurements	Once a year	

Table 2. A summary of calibration practices. Chandrasekar et al., 2015: Calibration Procedures for Global Precipitation-Measurement Ground-Validation Radars

- Document calibration results.
- Solar monitoring, only Rx chain and Antenna pointing.
- Need for Tx and DP monitoring
- Work towards Vertical Scans (Brid-Bath) and BITE figures
- Started working towards Stable Clutter:

Signal Processing

Scan Strategy

Scan Sequence

Scan Pattern - Seletar

Changi		Seletar		
Parameters	Value	Parameters	Value	
Temporal resolution [min]	5	Temporal resolution [min]	5	
Elevations [deg]	0.3,1.0,1.5,3.0,5.0,7.5,10.0 ,20.0,40.0	Elevations [deg]	0.3,1.0,1.5,3.0,5.0,7.5,10.0 ,20.0,40.0	
Stop range [km]	250 and 480	Stop range [km]	240 and 480	
Bin resolution [m]	250	Bin resolution [m]	127.5	
PRF [Low,High] [Hz]	0/1200	PRF [Low,High] [Hz]	833/1250	
Pulse width [µs]	0.85, 3.3	Pulse width [µs]	0.45, 3.5	
Antenna Speed [deg/s]	24 /30, 12	Antenna Speed [deg/s]	18,15	
Angle Step [deg]	1	Angle Step [deg]	1	
Time Sample	49/39, 24	Time Sample	29,20	

Filter Settings

Filter	Changi - Volume	Changi – Long Range	Seletar - Volume	Seletar – Long Range
Trip Recovery	Active	OFF	Active	OFF
Staggering	None	None	3/2	None
Dual PRF Correction	Active	Active	Active	Active
Doppler Filter	OFF	OFF	OFF	OFF
DFT Filter	Active	Active	Active	Active
Clutter Filter GIP	NA	NA	OFF	OFF
Interference Filter	NA	NA	SAFE MODE	SAFE MODE
Spatial Filter	Active	Active	Active	Active
Speckle Filter	Active	Active	Active	Active

Signal Processing: Reflectivity

- Frequency vs. Range plots:
 - Second Trip Echo
 - Errors in software (KDP/uPhiDP?)
 - Minimum Detectable Signal

15dBZ ≈ 0.16 mm/h

Changi Annual Rainfall vs Range - 2017

Signal Processing: Minimal Detectable Signal

Ideal: below 15 dBZ

15dBZ ≈ 0.15 mm/h

Has to do with pulse width How to possibly fix this?

The radar equation:

Range (km)

Sachidananda, M, and Zrnic, D.S., 1999, *Systematic phase codes for resolving range overlaid signals in a Doppler weather radar*, J. Atmos. Oceanic Technol., **16**, 1351-1363

Figure 3.4 The long, narrow shape of a second-trip echo arises because the echo is constrained into the solid angle of the beam, but much closer to the radar

RADAR: Seletar C-band Range Scan: 250km Elevation: 1.0° V nyquist: ≈ ±32 m/s

- dBuZ Uncorrected
- dBZ Corrected

dBuZ

dBZ

RADAR: Seletar C-band Range Scan: 250km Elevation: 1.0° V nyquist: ≈ ±32 m/s

- dBuZ Uncorrected
- dBZ Corrected

dBuZ

dBZ

RADAR: Seletar C-band Range Scan: 250km Product: CMAX V nyquist: ≈ ±32 m/s

ISSUES:

- RLAN interference
- Second Trip

dBZ – Cross Sections

Signal Processing: Velocity Frequency vs Range: January 2019 Changi: S-band 1° Elevation VRADH VSSS Jan 2019: VBADH - 1 deg **Doppler Spectrum** 20 Near ground: rain with mean fall speed near --6 m s 90% Ground clutter contamination 85% 80% Power (dB) Rain spectra -20 5% -18 -15 -12 -9 -6

Second Trip Filter

Errors in software

Aggressive filtering

•

٠

Discrete Fourier Transform (DFT) Filter Width:

- Changi: 3.96 m/s [-1.98 1.98]
- Seletar: 3.32 m/s [-1.66 1.66]
- IMPACT ON SHEAR AND PHENOMENA DETECTION?

-3

0

Radial velocity (m s⁻¹)

3 6 9

Ground clutter

Altitude: 320 m

12 15 18

Changi PPI: 7.5°

Signal Processing: DFT Filter

RADAR: Seletar C-band Range Scan: 480km Elevation: 0.8° V nyquist: ≈ ±8 m/s

ISSUES:

• DTF Filter removing to much info

Signal Processing: Recommendation

Balanced Scan strategy (compromise):

- Time sampling important
- Balance between (pulse width, PRF, staggering, etc...)
- Can combine multiple "scans"
 - Shear (100sec)
 - PCAPPI (2.5 min)
 - Long Range (5 min)
 - Volume (14 unique elevations, 5 min)
 - Bird Bath (5 min)
- Need to get this part right, can't rerun

Quality Control and Processing

Factor Influencing Radar Quality

Example - Ships

Ship detected within Sea Clutter

> 10 Months Accumulated Rainfall George radar SA

2017 Accumulated Rainfall Singapore Changi

Mountain Range to the North causing beam blockage

Shipping lanes

Example - Beam Blockage

Bright Band

- Common in stratiform precipitation.
- Happens when ice starts to melt falling through freezing level.
- Result due to inherit differences in reflective properties of ice and water
- Dielectric constant water = 0.93 and ice = 0.197

Bright Band Filter - Result

Hourly Accumulations – Bright Band Cases

-0.4

-0.6 -0.8

No BBC

BBC

Rain Gauge Bias 2011-01-03 22:00:00

No BBC

BBC

Verification – Bright Band Cases

Correlation 1 Hour Gauges

MAE 1 Hour Gauges

BIAS 1 Hour Gauges

BBC No BBC

RMSE 1 Hour Gauges

Quality Control

Interference filter active on Signal Processor

rack: baldrad.fmi.fi/software/rack/doc/rack/html/index.html **PyART**: arm-doe.github.io/pyart/ wradlib: wradlib.org/tag/python

- Non-Met echoes (rack)
- Interpolate Missing Values

scenario with QC parameters.

Will require a cautious approach

QC using SCOUT

Beam Blockage Correction, Ground Clutter Removal, Speckle Filter, Reverse Speckle, Gabella Filter, Interpolation

Ermelo – No QC

Werte in: mm < 46.88 46.88 - 93.75 93.75 - 140.62 140.62 - 187.5 187.5 - 234.38 234.38 - 281.25 281.25 - 328.12 328.12 - 375 375 - 421.88 421.88 - 468.75 468.75 - 515.62 515.62 - 562.5 562.5 - 609.38 609.38 - 656.25 656.25 - 703.12 > 703.12

2013/03/06 12:00:00 AM -2014/03/29 12:00:00 AM Radar: Format: HDF Bildart: Kumuliertes Bild Elevation: 0.5°

Ermelo – QC

QC using SCOUT

Beam Blockage Correction, Ground Clutter Removal, Speckle Filter, Reverse Speckle, Gabella Filter, Interpolation

Durban – No QC

Werte in: mm ____ < 25 25 - 50 50 - 75 75 - 100 100 - 125 125 - 150 150 - 175 175 - 200 200 - 225 225 - 250 250 - 275 275 - 300 300 - 325 325 - 350 350 - 375 > 375

2014/12/02 12:00:00 AM -2014/12/31 11:54:00 PM Radar: Format: HDF Bildart: Kurnuliertes Bild Elevation: 0,5°

Velocity Folding – Dealiasing

Velocity dealiasing using Py-ART

Quality Control (QC)

Before

After

Quality Index (QI) Field

Dynamic QI (Weather related)

- Attenuation
- Bright Band
- Aircraft
- Birds, insects (bio)
- Vertical variability
- Anomalous propagation

Static QI (properties of radar)

- Range
- Beam blockage
- Beam height
- Ground clutter
- Good to use in network planning

QI (static) example – compositing

Data Processing

Convert to 3D Cartesian

Track data and sale of the second sec

500 X 500 X 39 pixel, ±125km, 500m resolution Proj: azeq

480 X 480 X 39 pixel, ±120km, 500m resolution Proj: azeq

WSSS

WSSL

Composite Domain

Data sources:

PPI

CAPPI

• 3D Cart

٠

٠

Methods:

- Max •
- Mean
- QI Weights •
- Timing sync scans •

South Africa - 04/09/2015 14:00:00 UTC - Radar 24HR Rainfall

COMP MAX: 3697X3215 pixel, 500m resolution, Proj: latlon

250.0 200.0

90.0 80.0 70.0 60.0 50.0 45.0 40.0

35.0 30.0 25.0 20.0 15.0 10 8.0

7.0 6.0 5.0 4.0 3.0 2.0

1.0 0.5 0.2 0.1 0.0

Rain Gauge Quality Control

Rain Gauge Quality Control Procedure

Possible sources of error

- 1. Detection of gaps in the data.
- 2. Detection of physically impossible values.
- 3. Control of measurement variability.
- 4. Detection of constant values.
- 5. Control of internal consistency.
- 6. Control of spatial consistency.

Analysis

- Calculate univariate and bivariate statistics
- QQ-plots, Bubble-plots, Histograms, etc.
- Threshold unrealistic values
- Round to the nears 10th (floating point errors)
- Find Correlations, Medians, Averages, Accumulation, Availability

- Univariate Statistics:
- QQ plot
- Extreme values thresholding
- Set to missing
- QQ-plot now showing more realistic values
- Histogram showing log distribution

More Quality Control techniques

- 1. Gross error checking (unrealistic values)
- 2. Range Test Check (statistical Distributions, Probability of occurrence)
- 3. Spatial Consistency Check (SCC) (declustering)
- 4. Temporal Consistency Check (Constant Values)
- 5. Radar and Satellite Conformity Check (Correlation, Rolling accumulations)

- Irena Otop1,*, Jan Szturc1, Katarzyna Ośródka1 and Piotr Djaków1 Automatic quality control of telemetric rain gauge data for operational applications at IMGW-PIB
- T. Einfalt, J. Szturc, K. Ośródka, Atmos. Sci. Lett. 11, 139–144 (2010)
- Any good Geostatistics Textbook

Thank You Questions?

Erik_BECKER@nea.gov.sg