Introduction to Himawari-8/9 and its products

Koji Yamashita

Meteorological Satellite Center Japan Meteorological Agency Himawari-9

Himawari-8

Contents

- 1. Overview of Himawari-8 and -9
- 2. Satellite derived products
- 3. Target Area observation for HimawariRequest
- 4. RGB Imageries
- 5. Usage of Himawari-8 and -9 Products for typhoon

History of Japanese Geostationary-Orbit Satellites

Himawari-8 began operation at 02:00 UTC on 7th July 2015.

Himawari-8/9

operational satellite

13.75 - 14.5 GHz (uplink)

Improved Resolutions

Spectral Bands

	Hi	mawari	-8/9 Imag	jer (AHI; Ad	lvanced Himawari Imager)	
cf. MTSAT-2	Band		Spatial Central Resolution Wavelength		Physical Properties	
Bands	1		1 1/00	0.47 µm	vegetation, aerosol]
44	2	Visible (VIS)		0.51 μm	vegetation, aerosol	Bands
VIS 0.68 um	3	(110)	0.5 km	0.64 µm	Vegetation, low cloud, fog	
0.00 µm	4	Near	1 km	0.86 µm	vegetation, aerosol] Addition
	5	Infrared	2.1	1.6 µm	cloud phase	> of NIR
	6	(NIR)	Z KIII	2.3 µm	particle size	Bands
3.7 μm	7			3.9 µm	low cloud, fog, forest fire	-
	8			6.2 µm	mid- and upper-level moisture] Increase
6.8 μm	9			6.9 µm	mid-level moisture	> of WV
	10			7.3 µm	mid- and lower-level moisture	Bands
	11	Infrared	2 km	8.6 µm	cloud phase, SO ₂	11
	12	(IR)		9.6 µm	Ozone content	
IR1 10.8 µm	13			10.4 µm	cloud imagery, information of cloud top	Increase
	14			11.2 µm	cloud imagery, sea surface temperature	Bands
1K2 12.0 μm	15			12.4 µm	cloud imagery, sea surface temperature	
	16			13.3 µm	cloud top height, CO2	J

Spatial Resolution

MTSAT-2 (VIS) 1km

Himawari-8 (B03) 0.5 km

03:00 UTC on 29 January 2015

Observation Frequency

MTSAT-2 (VIS) Hourly in Monochrome

Himawari-8 (Band01-03) Every 10 minutes in Full-Color

MT5AT-2 VIS 02, APR, 2015 16:00UTC

Himawari-8 02, APR, 2015 16:00UT

16 UTC on 2^{nd} to 13 UTC on 3^{rd} , April 2015

AHI Observation Modes

2016/11/8

AHI Scan Scenario

Himawari-8: Observation Area and Interval

Himawari-8/9 Ground Segment and Operations

Two Ways of Data Dissemination/Distribution HimawariCast/HimawariCloud

Data distribution/dissemination methods

Two Ways of Himawari-8/9 Imagery Dissemination/Distribution

HimawariCast via Communication Satellite

- Service for <u>Everyone</u>
- No Pass Code for Receiving
- <u>14 bands</u> (1 VIS and 13 IR) every <u>10 minutes</u> for Full Disk
- Spatial Resolution is same as that of MTSAT <u>HRIT compatible</u>

HimawariCloud via Internet Cloud

- Service for <u>NMHSs</u> with high-speed Internet access
- All <u>16 bands</u> (3 VIS and 13 IR)
- Full Specification (temporal and spatial) of Imagery

HimawariCast/HimawariCloud: Data spec.

Service	Users	Format	Interval	Band	Resolution	Delivery
HimawariCloud (for advanced usage)	NMHS	HSD (Himawari Standard Data)	10 min	16	VIS: 0.5-1 km IR: 2 km	<u>High-speed</u> Internet (NTT Communication)
HimawariCast (for baseline usage)	All	HRIT files (MTSAT Compatible)	10 min	14	VIS: 1 km IR: 4 km (B07 is "2km" at night time)	Communication Satellite (JCSAT-2B)
Web-based Quick-Look	All	JPEG	10 min	4+	several km	

https://www.data.jma.go.jp/mscweb/data/himawari/sat_img.php?area=se1

Dataset Disseminated via HimawariCast

Data type	Format	Notes
Himawari-8 imagery (full disk)	HRIT	Interval: 10 minutes Number of bands: 14
		Spatial resolution: VIS: 1 km, IR: 2 - 4 km
	LRIT	Interval: 10 minutes
		Number of bands: 4 (VIS, IR1, IR3, IR4)
		Spatial resolution: 5 km
Numerical weather	SATAID	JMA Global Spectral Model (GSM) products (48-hour forecast)
prediction (NWP)		Interval: 6 hours
		Spatial resolution: 1.25 degrees
In-situ observations	SATAID	Observation data for East Asia and Western Pacific regions
(SYNOP, TEMP, SHIP)		Interval: 30 minutes
ASCAT ocean surface	SATAID	Observation data from EUMETSAT's Metop polar-orbiting
winds		satellites
		Interval: 30 minutes
Operation plan	Text	Frequency: twice a day
(MANAM)		

HimawariCast software and manuals:

http://www.data.jma.go.jp/mscweb/en/himawari89/himawari_cast/himawari_cast.html

HimawariCast with SATAID

HimawariCast provides

an Integrated Environment for Satellite Cloud Imagery Analysis with overlaying weather radar, GPV, SYNOP on SATAID system

- Overlaying GPV, SYNOP on satellite image will be disseminated via HimawariCast.
- Satellite image in SATAID format can be downloaded from WIS Portal server, or you can convert from HRIT image data.
- SATAID System will be available from MSC Website with "Source Code"
- Image data format converter between HRIT and SATAID/NetCDF will be provided from MSC Website
- Handling Tools for reading Image Data in NetCDF format will also be provided from MSC Website for the further use in GIS applications.

What's SATAID?

SATAID (SATellite Animation and Interactive Diagnosis) is a sophisticated display software visualizing meteorological information in multiple dimensions (spatial and temporal), which assists forecasters to analyze and monitor continually weather parameters and phenomena for better meteorological services.

Synergy of HimawariCast and SATAID

HimawariCast assists weather monitoring and analysis with SATAID software (visualization tool).

- ✓ HimawariCast HRIT files can be converted into SATAID format. (JMA-prepared software also supports this conversion.)
- ✓ The latest SATAID software (Ver3.2) supports all 16 bands of Himawari-8.
- ✓ HimawariCast meteorological data can also be displayed in SATAID software.

SATAID software

RGB imageries can be easily composed

WIS Portal - GISC Tokyo SATAID Service

JMA has been offering SATAID service within the framework of WMO Information System (WIS).

WIS Portal - GISC Tokyo SATAID Service

Satel	lite Imagery of Himawari-8		Observation		
List of the channel	Infrared channel-1 (IR1)		SYNOP		
	Infrared channel-2 (IR2)	Interval	hourly		
	Water Vapor (WV)	Size	100-150 KB/file (map time)		
	Infrared channel-4 (IR4)		20-60 KB/file (other)		
	Visible imagery (VIS)	2	SHIP	5	
Interval	ten minutes each	Interval	hourly	uscien	NW NE
Size	2-4 MB/file	Size	20-30 KB/file	~	A HUN AND A
NWP Products		METAR		K	Chine aparet atoms
Resolution	1.25 x 1.25 deg	Interval	hourly	2	Participa Balan Parthe Deven
Forecast hour	up to 48 hours	Size	180 KB/file	7	
Initial time	00. 06. 12. 18 UTC		TEMP (A, B)	-	- NERE
Interval	4 times/day (around 04, 10, 16, 22 UTC)	Interval	12 hour/day, basically	dlan	Senar
Size	4 MB/file	Size	100 KB/file	_	Australia Australia
SST	(Sea surface temperature)	ASCAT and surface wind			Low Asyday
Interval	Once/day	ASC	AT sea-surface wind	R	
Size	600 KB/file	Interval	Twice/day		SW SE
		Size	6 MB/file		

SATAID application and data download tool: http://www.wis-jma.go.jp/cms/sataid/app/download/ SATAID quick guide and operational manual: http://www.wis-jma.go.jp/cms/sataid/manual/

Note that low-resolution and small number of bands are provided by the WIS Portal

Web-based Quick-Look

Current position: <u>Home > Real-Time Image</u> > Real-Time Product for RA-II

Imagery with heavy rainfall potential areas

The imagery suggests potential areas of heavy rainfall associated with deep convective clouds. The areas are indicated in magenta

Users' Guide to Imagery with Heavy Rainfall Potential Areas

[The Legal Notice of this website] Copyright (C) by Japan Meteorological Agency (JMA). All Rights Reserved

RGB Imagery available on:

https://www.data.jma.go.jp/mscweb/data/himawari/sat hrp.php?area=r5s

JMA provides the Web site and the User's Guide documentation.

- RGB composite imagery based on the WMO standard recipe are produced from Himawari-8 imagery.
- Products are provided for supporting SWFDP in RA II/RA V region.
- IR(10.4μm), IR(3.9μm), WV(6.2μm), VIS(0.64µm), Heavy Rainfall Potential Areas and Sandwich Imagery are also provided.

Real-time JPEG Imagery Service on JMA/MSC Website for Asia-Oceania Region

Provision of Himawari Data for Researcher

> JAXA (Japan Aerospace Exploration, Earth Observation Research Center)

- http://www.eorc.jaxa.jp/ptree/index.html
- > You must register to download data from JAXA's site.
- > NICT (National Institute of Information and Communications Technology)
 - Real-time data
 - http://himawari8.nict.go.jp/

> Archived data (Japanese page)

http://sc-web.nict.go.jp/himawari/himawari-data-archive.html

Data format	Obs. Area	Size(non-	compress)	Note
Himawari	Full disk	330 GB per day	2.3 GB per 10min.	 Full disk: every 10 min. Japan area: every 2.5 min. 16 bands
Standard Data	Japan area	80 GB per day	140 MB per 2.5min.	
(HSD)	Target area	10 GB per day	80 MB per 2.5min.	
PNG	Full disk Japan area Target area	10 GB per day 2.5 GB per day 0.5 GB per day	140 MB per 10min. 7.5 MB per 2.5min. 1.5 MB per 2.5min.	 Full disk: every 10 min. Japan area: every 2.5 min. True color image only (composite of 3 visible bands)
NetCDF	Japan area	160 GB per day	280 MB per 2.5min.	−Japan area∶every 2.5 min.
	Target area	50 GB per day	90 MB per 2.5min.	−16 bands

Himawari-8/9 Users Support Information

https://www.jma-net.go.jp/msc/en/support/

Contents:

- Overview of satellite observation
- Overview of data dissemination
- Imager (AHI) specifications
- Operational status
- Sample data

Sample source code to read Himawari-8 data and convert into other formats

- From HSD or HRIT to NetCDF Data
- From HSD or HRIT to SATAID Data
- From HSD to HRIT Data etc.

Feel free to contact:

Satellite Program Division, Japan Meteorological Agency

metsat@met.kishou.go.jp

Meicor	ological Satellite (oontor (inse)		and the second	A DESCRIPTION OF THE OWNER	Correction and	32 St. 57 71 Mile
Home	Activities	Products	5	Operations	Supp	orts	
t position: <u>Hor</u>	Sample Data	a (Names/	forma	ts)			
Imager (AHI)	Sample Da	ata AHI F	roxy Data	Himaw	ariCast	Himawa	riCloud
					a JPEG Image D		
Th Ta Ot Th	nis page provides samp able 1 shows names an bservation data set is a ne bzip2-compressed A	ole data created fr d formats of Himav acquired in Himawa MI Proxy data file i	om AHI Ob vari-8 and ari-8 in-orb is smaller t	eservation data a -9 data process it-test period, no than the AHI Ob	and <u>AHI Proxy d</u> sed by JMA. AHI ot in its operatio servation data fi	ata. nal. le.	
Th Ta Ot Th Ta	his page provides samp uble 1 shows names an bservation data set is a he bzip2-compressed A able 1. Names/form	ole data created fr d formats of Himaw acquired in Himawa HI Proxy data file i ats of Himawa	om AHI Ob wari-8 and ari-8 in-orb is smaller t ri-8 and -	eservation data a -9 data process it-test period, nu han the AHI Ob 9 observation	and <u>AHI Proxy d</u> . sed by JMA. AHI of in its operatio servation data fi n data proces Method	ata. nal. le. sed by (ЈМА
Th Ta Ot Th T	his page provides samţ bible 1 shows names an bservation data set is a ne bzip2-compressed A able 1. Names/form Name	ole data created fr d formats of Himaw acquired in Himawa Hil Proxy data file i nats of Himawa Observation	om AHI Ob wari-8 and ari-8 in-orb is smaller f ri-8 and -	servation data a -9 data process it-test period, nu han the AHI Ob: 9 observation	and <u>AHI Proxy d</u> sed by JMA. AHI ot in its operatio servation data fr n data proces Method For	ata. nal. le. sed by ·	JMA
Th Ta Ot Th	his page provides samp bible 1 shows names an bservation data set is a ne bzip2-compressed A able 1. Names/form Name (format)	ole data created fr d formats of Himau acquired in Himawa HI Proxy data file I hats of Himawa Observation area	om AHI Ob wari-8 and ari-8 in-orb is smaller t ri-8 and -	eservation data a -9 data process III-test period, ni han the AHI Obs 9 observation via HimawariCast	and AHI Proxy d sed by JMA. AHI to tin its operation servation data fi a data process Method For Via HimawariCloud	ata. nal. le. sed by . NMHSs via JDDS	JMA via <u>WIS</u> Potal
TT Ta Ot TT T	his page provides samţ bible 1 shows names an bservation data set is a ne bzip2-compressed A able 1. Names/form Name (format) Himawani Standard Da	ble data created fr d formats of Himan acquired in Himawa HI Proxy data file i ats of Himawa Observation area Full disk	om AHI Ob vari-8 and ari-8 in-orb s smaller t ri-8 and -	-9 data process -9 data process III-test period, nr han the AHI Obs 9 observation via HimawariCast	and AHI Proxy d sed by JMA. AHI to in its operation servation data fin a data process Method For Via HimawariCloud Q	ata. nal. le. sed by MMHSs via JDDS –	JMA via <u>Wis</u> Potal
זד גע דד גד	his page provides samţ bibe 1 shows names an bservation data set is a ne bzip2-compressed A able 1. Names/form Name (format) Himawari Standard Da (Himawari Standard Da	ble data created fr d formats of Himawa acquired in Himawa HII Proxy data file i ats of Himawa Observation area Full disk Japan area	om AHI Ob wari-8 and ari-8 in-orb is smaller 1 ri-8 and -	via	and AHI Proxy d sed by JMA. AHI to in its operatio servation data find a data process Method For Via HimawariCloud Q Q	NMHSs via JDDS –	JMA via WIS Potal -
TT Ta Ot TT TE	his page provides samp table 1 shows names an bservation data set is a ne bzip2-compressed A able 1. Names/form Name (format) Himawari Standard Da (<u>Himawari Standard Da</u> (<u>Himawari Standard Da</u>	ble data created fr d formats of Himawa acquired in Himawa HII Proxy data file i Observation area Cobservation area HII Japan area Target area	via JMBSC Q	via	and AHI Proxy d sed by JMA. AHI of in its operatio servation data find a data process Method For Via HimawariCloud Q Q Q	nal. le. NMHSs via JDDS - -	Via Wis Potal -
TT Ta Ot Tt Tr	his page provides samp bible 1 shows names an bservation data set is a ne bzip2-compressed A able 1. Names/form Name (format) Himawari Standard Da (Himawari Standard Da (Himawari Standard Da (Himawari Standard Da (HRIT Data (HRIT File Format)	be data created fr d formats of Himawa acquired in Himawa HII Proxy data file i Observation area Full disk Japan area Target area	via JMBSC Q Q Q Q Q	via HimawariCast 0 0 0 0 0 0 0 0 0 0 0 0 0	And AHI Proxy d and AHI Proxy d bed by JMA. AHI to in its operation servation data find a data process Method For via HimawariCloud Q Q Q Q Q	ata. nal. set by √ NHHSs via JDDS ☐ ☐ ☐ ☐ ☐	JMA Via WIS Potal – –

Next to Satellite derived products!

Eruption of Mt. Shiveluch in Kamchatka March 25, 2015 Footage from Himawari-8 Test Observation (Band-3 (0.64µm), 2.5 min.)

Contents

- 1. Overview of Himawari-8 and -9
- **2. Satellite derived products**
- 3. Target Area observation for HimawariRequest
- 4. RGB Imageries
- 5. Usage of Himawari-8 and -9 Products for typhoon

2. Satellite derived products

- Introduction to Satellite Remote Sensing
- Himawari-8 products
 - ✓ Cloud Mask, Type, Phase and Top height
 - ✓ Heavy Rainfall Potential Area
 - ✓ Clear Sky Radiance
 - ✓ Atmospheric Motion Vector
 - ✓ Rapidly Developing Cumulus Area
 - ✓ Aerosol Optical Depth
 - ✓ Volcanic Ash
 - ✓ Sea Surface Temperature
 - ✓ Fog

Satellite Remote Sensing of the Earth

• Observing surface and atmosphere of the Earth from space by using electromagnetic radiation

Electromagnetic Radiation

 $C = \mathcal{O}\lambda \quad \begin{array}{l} c: \text{ speed of light in vacuum (=2.9979 x 10^8 [ms^{-1}])} \\ v: \text{ frequency of electromagnetic radiation [Hz=s^{-1}]} \\ \lambda: \text{ wavelength of electromagnetic radiation [m]} \end{array}$

Himawari-8 AHI 16 Bands

SRFs of Himawari-8/AHI (solid) and MTSAT-2/IMAGER (dashed) Himawari-8 observes 0.8 SRF 0.4 visible to infrared 0.0 radiation from the Earth. 0.4 0.5 0.6 0.7 0.8 Wavelength (µm) Visible (VIS) Bands SRF (Spectral Response Function): relative spectral sensitivity 320 1.0 0.9 300 0.8 0.7 280 0.6 IASI(sim) 260 04 240 0.3 0.2 220 0.1 200 0.0 0 2 3 5 7 8 9 10 11 12 13 14 15 16 6 Wavelength [µm] Infrared (IR) bands Near Infrared (NIR) bands Visible (VIS) Bands

Required Information vs Observation

- Required Information Observation
 - Wind speed
 - Temperature
 - Cloud height

- - Electromagnetic wave

How can we derive the required info?

Retrieval: estimating state of the atmosphere and earth surface from satellite observation

- Observed EM radiation
 - Integration of various radiative processes (e.g. reflection of solar radiation on clouds)
 - Lots of information on gases, clouds, aerosol, earth surface, etc.
- Not straightforward to isolate what we need from the integration, but possible
 - E.g. retrieval of cloud top temperature

Surface Reflection Surface reflectance depends on surface type **Satellite**

Fresh snow

Grass

Spectral surface reflectance (Water and Soil)

EUMETRAIN - Monitoring Vegetation From Space (http://www.eumetrain.org/data/3/36/print.htm)

VIS band image

- ✓ Solar radiation reflected (or scattered) by surface, cloud, aerosol, etc.
- ✓ Intensity of reflected radiation depends on property of surface, cloud, aerosol, etc.

IR band Image

- ✓ Thermal radiation emitted by surface, atmosphere, cloud, etc.
- ✓ Thermal radiation indicates temperature of surface, atmosphere, cloud, etc.

Surface reflectance property (Water/Soil): VIS vs NIR

Visible Band3 (0.64µm, VS)

Near-Infrared Band4 (0.86µm, N1)

2. Satellite derived products

- Introduction to Satellite Remote Sensing
- Himawari-8 products
 - ✓ Cloud Mask, Type, Phase and Top height
 - ✓ Heavy Rainfall Potential Area
 - ✓ Clear Sky Radiance
 - ✓ Atmospheric Motion Vector
 - ✓ Rapidly Developing Cumulus Area
 - ✓ Aerosol Optical Depth
 - ✓ Volcanic Ash
 - ✓ Sea Surface Temperature
 - ✓ Fog

Himawari-8 Geophysical Products

Gridded Cloud Info

High-resolution Cloud Analysis Information (HCAI)

- Cloud products (cloud-mask, -type, -top height), snow/dust detection and image quality information
 - ✓ latitude-longitude grid in 0.02 degree
 - ✓ 60.01° S 60.01 ° N, 79.99° E– 159.99 ° W
 - ✓ produced hourly basis
- The ATBDs (Algorithm theoretical basis documents) was published in March 2016
 - https://www.data.jma.go.jp/mscweb/en/product/library/note/in dex.html#No61

Cloud Mask

Mixed

Clear

Cloud

Dust Detection

02UTC on 10 April 2015

0 20 40 60 80 100 120 140 160 180 200 X100m

HCAI Cloud Mask

Cloud Mask

Clear (no cloud) and no dust

<u>Clear-cloudy mixed</u> and no dust

<u>Cloudy</u> and no dust

Clear and dust

<u>Clear-cloudy mixed</u> and dust

<u>Cloudy</u> and dust

HCAI cloud mask includes dust information

HCAI Cloud Type

HCAI cloud type is easy-to-understand (forecaster-friendly)

Cloud Type

Clear (no cloud) Cumulonimbus Dense cloud Upper cloud Middle cloud Cumulus Stratocumulus Stratus or Fog

"Cumulus"Convective cloud with cloud-top height below 600hPa"Dense cloud"Cloud with cloud-top height above 400hPa, except for cumulonimbusand cloud categorized into "upper cloud"Cloud with cloud-top height between 400 and 600hPa"Upper cloud"Single layer cloud with cloud-top height above 400hPa

Product regions and file size

- Select one of the product regions
- Provided HCAI product for JMA Data Dissemination System (JDDS) users

Area Name		Latitude	Longitude	File size / hr.	Compressed file size / hr. (Download file size)
FD	Full Domain	60N-60S	80E-200E	180 MB	29.5 MB
NC	North Central	45N-20S	90E-155E	50 MB	10 MB
NW	Northwest	60N-5S	80E-145E	50 MB	10 MB
SE	Southeast	5N-60S	135E-200E	50 MB	10 MB
ТР	Tropical	25N-25S	80E-200E	75 MB	15 MB
TE	Tropical East	25N-25S	135E-200E	40 MB	7.5 MB
NE	Northeast	60N-5S	135E-200E	50 MB	10 MB
SW	Southwest	5N-60S	80E-145E	50 MB	10 MB

If you are interested in the HCAI product,

- Please let us know preferable subset region,
- We will send you sample files and document.

Point of Contact

metsat@met.kishou.go.jp

2. Satellite derived products

- Introduction to Satellite Remote Sensing
- Himawari-8 products
 - ✓ Cloud Mask, Type, Phase and Top height
 - ✓ Heavy Rainfall Potential Area
 - ✓ Clear Sky Radiance
 - ✓ Atmospheric Motion Vector
 - ✓ Rapidly Developing Cumulus Area
 - ✓ Aerosol Optical Depth
 - ✓ Volcanic Ash
 - ✓ Sea Surface Temperature
 - ✓ Fog

Heavy Rainfall Potential Areas

- What it is?
 - Imagery to support to detect heavy rainfall area outside of radar detection range.
 - The imagery is updated every 10 mins.
 - The imagery is available on JMA MSC web site.
 - https://www.data.jma.go.jp/mscweb/data/himawari/sat_hrp.php?area=r2s
 - Southeast Asia and South Pacific islands areas are supported.
- Background
 - The product supports for one of the WMO projects, SWFDP (Severe Weather Forecasting Demonstration Project)
- Rainfall potential areas based on data from the AHI are compared on a pixel-bypixel basis to rainfall retrieval data from microwave imagers on board the polar orbiting satellites in the Global Satellite Mapping of Precipitation (*GSMaP).
- User's guide is also on the above web site.

*The GSMaP Project is sponsored by JST-CREST and promoted by the JAXA Precipitation Measuring Mission (PMM) Science Team.

	Area		
	Southeast Asia	South Pacific Islands	
POD	0.812	0.805	
SR	0.012	0.012	

Table 1 Results of comparison for rainfall of 20 mm/h or more

The heavy rainfall potential areas imagery

- Note that the imagery is a **POTENTIAL** area with heavy rainfall.
- Generally, it is difficult to know precipitation amount from geostationary satellite imager VIS/IR bands data.

Heavy rainfall potential area on JMA website

2. Satellite derived products

- Introduction to Satellite Remote Sensing
- Himawari-8 products
 - ✓ Cloud Mask, Type, Phase and Top height
 - ✓ Heavy Rainfall Potential Area
 - ✓ Clear Sky Radiance
 - ✓ Atmospheric Motion Vector
 - ✓ Rapidly Developing Cumulus Area
 - ✓ Aerosol Optical Depth
 - ✓ Volcanic Ash
 - ✓ Sea Surface Temperature
 - ✓ Fog

Clear Sky Radiance (CSR)

Area averaged clear sky brightness temperature

- All IR bands (3.9, 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, 13.3 μm)
- ✓ Full disk, **hourly produced** and distributed via GTS mainly for NWP community
- ✓ Spatial resolution (averaging size): 16 x 16 pixel (IR) (i.e. <u>32 x 32 km</u> @SSP)
- ✓ **<u>Band dependent</u>** clear pixel ratios for clear pixel detection
- ✓ Provided to NWP centers via GTS and WIS service

2. Satellite derived products

- Introduction to Satellite Remote Sensing
- Himawari-8 products
 - ✓ Cloud Mask, Type, Phase and Top height
 - ✓ Heavy Rainfall Potential Area
 - ✓ Clear Sky Radiance
 - Atmospheric Motion Vector
 - ✓ Rapidly Developing Cumulus Area
 - ✓ Aerosol Optical Depth
 - ✓ Volcanic Ash
 - ✓ Sea Surface Temperature
 - ✓ Fog

Atmospheric Motion Vectors (AMV)

Red←lower level blue←upper level

Overview of Calculation for AMV

- 1. Using two sequential satellite images, track cloud pattern and obtain a mobile vector of the cloud (ΔL).
- 2. To obtain velocity of the cloud, divide the cloud mobile vector by time difference (Δt) between the two images.

AMV = **∆L**/∆t

L : cloud mobile vector, Δt : time difference

Atmospheric Motion Vector (AMV)

Himawari-8 AMVs

derived from new algorithm (Shimoji 2014, IWW 12)

derived from heritage algorithm (Oyama 2010, MSC technical report)

Himawari-8 and MTSAT-2 IR AMV (QI>60, 17 UTC on 14 January 2015)

Improvement of Mid-Layer AMV Retrieval

Provision for AMV

Himawari-8/9 atmospheric motion vector products generated by JMA

AMV type	Height range	Periodicity	Image interval	Target size (pixels)	Distribution
10.4 μm (IR)	125 – 1,100 hPa	Hourly	10 minutes	7 x 7	BUFR via GTS
0.64 μm (2km VIS)	125 – 1,100 hPa	Hourly	10 minutes	7 x 7	BUFR via GTS
6.2 μm (WV1)	125 – 400 hPa	Hourly	10 minutes	7 x 7	BUFR via GTS
6.9 μm (WV2)	125 – 500 hPa	Hourly	10 minutes	7 x 7	BUFR via GTS
7.3 μm (WV3)	125 – 600 hPa	Hourly	10 minutes	7 x 7	BUFR via GTS
3.9 μm (IR)	125 – 1,100 hPa	Hourly	10 minutes	7 x 7	Internal use only

WIS Service for AMV

JMA has been also offering AMV within the framework of WIS. You can get it from the WIS Portal-GISC Tokyo, internet service. The URL of WIS Portal is as below.

http://www.wis-jma.go.jp/cms/

For example, you can find and download Himawari-8 AMV immediately. http://www.wis-jma.go.jp/data/browse?ContentType=HTML&start=0&Satellite=Himawari&Category=Satellite&Type=BUFR&Access=Open

Low level AMV for typhoon analysis

Forecasters estimate intensity of tropical cyclones using surface wind information. In-situ observations such as vessels and buoys are sparse especially on the ocean. ASCAT ocean vector winds are very useful for the analysis, but the number of observations is not sufficient.

If we can estimate sea surface wind from AMV assigned to low altitude, it will be helpful for typhoon analysis.

Estimation and accuracy of the sea surface wind

- Between ASCAT sea ocean vector winds and low-level AMV (≥ 700hPa), there is good correlation.
- Adjusting low-level AMVs to ASCAT with using linear regression equation, wind speed over the ocean is estimated with reducing factor 0.7-0.8.

We can simply evaluate sea surface wind speed by the following:

ASCAT wind speed ~ low-level AMV x 0.76

Wind speed correlation between low-level AMV (Band 03, AMV height \geq 700hPa, QI w/o forecast \geq 0.8) and ASCAT

Accuracy of the estimated sea surface wind from low-level AMV against ASCAT wind

AMV>=5m/s	RMSE [m/s]	Bias [m/s]
B3 (0.64um)	1.54	-0.322
B7 (3.9um)	1.63	-0.441
B13 (10.4um)	1.72	-0.630

RMSEs are calculated for low-level AMVs that speed are above 5m/s, QI(w/o forecast) $\ge 80\%$

http://cimss.ssec.wisc.edu/iwwg/iww13/proceedings_iww13/papers/session6/IWW13_Session6_4_Nonaka_final_update.pdf

Comparison between low-level AMV and sea wind - wind direction -

Wind direction difference between ASCAT and low-level (≥700hPa) AMV

AMV>=5m/s	SD [deg]	Bias [deg]
B03 (0.64um)	14.7	8.18
B07 (3.9um)	17.2	9.23
B13 (10.4um)	18.6	8.57

These values are calculated for low-level AMVs that speed are more than 5m/s, QI(w/o forecast) ≥ 0.8

AMV [deg]

Wind direction correlation between low-level AMV (Band 03, AMV height \geq 700hPa, QI w/o forecast \geq 0.8) and ASCAT

Low-level AMV directs outward more than about 8 to 9 degrees than ASCAT ocean vector winds.

2. Satellite derived products

- Introduction to Satellite Remote Sensing
- Himawari-8 products
 - ✓ Cloud Mask, Type, Phase and Top height
 - ✓ Heavy Rainfall Potential Area
 - ✓ Atmospheric Motion Vector
 - Rapidly Developing Cumulus Area
 - ✓ Aerosol Optical Depth
 - ✓ Volcanic Ash
 - ✓ Sea Surface Temperature
 - ✓ Fog

Rapidly Developing Cumulus Area (RDCA)

Developing Cumulus and Radar Echo

Concept of RDCA Detection

Concept of RDCA detection

Rapidly developing cumulus ✓ cloud top is getting high

✓ increasing asperity of cloud top

✓ cloud microphysical parameters transition

Characteristics of RDCA

- The isolated Cb cloud can be detected with high accuracy by RDCA
- The detection accuracy is low for Cbs located on the mixed area with low level clouds and middle – high clouds.
- Some cumulus clouds detected by RDCA do not develop to Cbs, and decay.

CBA

RDCA

MLUA

Left: RDCA detection incl. heat lightning at 12:40 UTC on 14 July 2011 by MTSAT-1R Right: Radar and lightning detection 40 minutes after the left figure

A case of RDCA detection which did not develop to cumulonimbus (11 July 2011)

2. Satellite derived products

- Introduction to Satellite Remote Sensing
- Himawari-8 products
 - ✓ Cloud Mask, Type, Phase and Top height
 - ✓ Heavy Rainfall Potential Area
 - ✓ Atmospheric Motion Vector
 - ✓ Rapidly Developing Cumulus Area
 - ✓ Aerosol Optical Depth
 - ✓ Volcanic Ash
 - ✓ Sea Surface Temperature
 - ✓ Fog

Aerosol Optical Depth product (Asian Dust: internal use)

Aerosol Optical Depth and Angstrom exponent

(the latter is derived only over the ocean)

Retrieval algorithm: LUT

- $\checkmark~$ 0.64, 0.86 μm (ocean), 0.64, 2.3 μm (land)
- $\checkmark\,$ Aerosol type is assumed to be Asian dust
- ✓ NOT optimized for other aerosol types (e.g. haze)

Internal use (Asian dust monitoring)

- Plan for introducing a JAXA algorithm in the AOD product on December 2018
- > AHI aerosol products for data assimilation
 - $\checkmark~$ Under development in collaboration with JAXA
- Volcanic ash retrieval algorithm would be applied to retrieve aerosol during nighttime

Volcanic Ash (Under-development)

Adoption of NOAA/NESDIS Algorithm

 Under implementation VOLCAT software developed by NOAA/NESDIS for <u>Himawari-8</u> <u>volcanic ash product</u> at JMA/MSC

- Many thanks to NOAA, Dr. Pavolonis and Dr. Sieglaff

Expected Products

- ✓ Ash top height
- ✓ Mass-loading
- ✓ Aerosol Optical depth
- ✓ Ash probability
- ✓ Effective particle radius

Evaluation and Validation

 Preliminary products will be provided to JMA's Tokyo VAAC (Volcanic Ash Advisory Center) for testing

> Preliminary results of VOLCAT for the eruption of Raung (Indonesia) on 13 July 2015.

Sea Surface Temperature (internal use)

Retrieval algorithm: LUT

- ✓ Using an algorithm developed by JAXA (Kurihara et al., 2016)
- ✓ 3.9, 8.6, 10.4, 11.2, 12.4 µm
- ✓ Hourly, 0.02deg horizontal resolution

Internal use

 This product is used to obtain the sea surface temperature around Japan.

Fog Detection Product (Under-development)

Night Microphysics RGB

True Color Reproduction Image

✓ latitude-longitude grid in 0.02 degree✓ produced every 10 minutes

2017.06.05.1600UTC~2017.06.05.2350UTC

Himawari-8 Geophysical Products

Gridded Cloud Info

Contents

- 1. Overview of Himawari-8 and -9
- 2. Satellite derived products
- **3. Target Area observation for HimawariRequest**
- 4. RGB Imageries
- 5. Usage of Himawari-8 and -9 Products for typhoon

Launch of the Service

- In January 2018, JMA launched a new international service "HimawariRequest", in collaboration with the Australian Bureau of Meteorology (AuBoM).
- The service allows NMHS users in WMO RA II and RA V to request Himawari-8/9 Target Area observation covering a 1000 km x 1000 km area every 2.5 minutes.

Users are able to request Target Area observation conducted every 2.5 min!

Rapid Scan Benefit

- Target Area observation provides better insight for extreme events such as tropical cyclones or volcanic eruptions.
- JMA utilizes Target Area observation for its services, including typhoon monitoring within the responsibility area of the Regional Specialized Meteorological Center (RSMC) Tokyo - Typhoon Center.

Request Webtool

- For easy and smooth request process, JMA prepared an webtool for HimawariRequest users.
- The webtool assists users to:
 - Select a center position
 - Specify start/end times
 - Create a request email
- The webtool is provided to each registered user.

Visualization of Observation Availability

Schedule of Target Area observations available on the webtool
➤ Users are able to check whether their requests are to be accepted.

Example of Target Area observation schedule

2018/10/05	17:50	30.2	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	18:00	30.2	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	18:10	52	158	HimawariRequest Available	
2018/10/05	18:20	52	158	HimawariRequest Available	
2018/10/05	18:30	52	158	HimawariRequest Available	
2018/10/05	18:40	52	158	HimawariRequest Available	
2018/10/05	18:50	52	158	HimawariRequest Available	
2018/10/05	19:00	52	158	HimawariRequest Available	
2018/10/05	19:10	52	158	HimawariRequest Available	
2018/10/05	19:20	52	158 HimawariRequest Available		

Observation Schedule of Himawari-8/9

018/10/05	16:20	29.9	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	16:30	29.9	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	16:40	29.9	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	16:50	30	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	17:00	30	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	17:10	30	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	17:20	30.1	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	17:30	30.1	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	17:40	30.1	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	17:50	30.2	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	18:00	30.2	125.5	RSMC Tokyo - Typhoon Center	
2018/10/05	18:10	52	158	HimawariRequest Available	
2018/10/05	18:20	52	158	HimawariRequest Available	
2018/10/05	18:30	52	158	HimawariRequest Available	
2018/10/05	18:40	52	158	HimawariRequest Available	
2018/10/05	18:50	52	158	HimawariRequest Available	
2018/10/05	19:00	52	158	HimawariRequest Available	
2018/10/05	19:10	52	158	HimawariRequest Available	

RSMC Tokyo - Typhoon Center(19.9,130) 2018/10/02 21:40 UTC

These time slots are expected to accept user's request!

Procedure for RA II

Procedure for RA V

Current Status (As of September 2018)

12 Registrations

the Solomon Islands, Myanmar, Australia, Hong Kong, Bangladesh, New Zealand, Malaysia, Samoa, Nepal, Thailand, Fiji and Russia

9 Users (preparations for request submission were complete) the Solomon Islands, Hong Kong, New Zealand, Nepal, Australia, Malaysia, Fiji, Thailand and Russia

JMA expects the HimawariRequest service to support disaster risk reduction activities in the Asia Oceania region.

Further information on HimawariRequest including its service description and registration form is available at JMA's webpage: https://www.jma.go.jp/jma/jma-eng/satellite/HimawariRequest.html

Test Observation with AuBOM

April 6th, 2018 04:00UTC - 05:00UTC Tropical Storm IRIS

Observation with AuBOM

October 15th, 2018 convective cloud activity around Darwin

Today's finished !

Contents

- 1. Overview of Himawari-8 and -9
- 2. Satellite derived products
- 3. Target Area observation for HimawariRequest
- 4. RGB Imageries
- 5. Usage of Himawari-8 and -9 Products for typhoon

4. RGB Imageries

- Introduction to RGB Imagery
- Himawari-8 RGB Imageries
 - ✓ Natural Color RGB
 - ✓ Airmass RGB
 - ✓ Night Microphysics RGB
 - ✓ Day Convective Storms RGB
 - ✓ Differential Water Vapor RGB

What's RGB?

- Red (R), green (G) and blue (B), which are the three primary colors of light, constitute color space expressing additive color composite
- RGB compositing is a technique to display a color using this property of the three primary colors of light

three primary colors RGB

Why RGB composite imagery?

Band	Himawari-8/ -9	MTSAT- 1R/-2	MSG	Physical Properties for Imagery	
1	0.46 µm			aerosol B	
2	0.51 µm			aerosol G	Visible
3	0.64 µm	0.68 µm	0.635 μm	low cloud, fog R	
4	0.86 µm		0.81 µm	vegetation, aerosol	
5	1.6 µm		1.64 μm	cloud phase	Near Infrared
6	2.3 μm			particle size	marca
7	3.9 μm	3.7 μm	3.92 μm	low cloud, fog, forest fire	
8	6.2 μm	6.8 µm	6.25 μm	upper level moisture	
9	6.9 μm			mid- and level moisture	
10	7.3 μm		7.35 μm	mid- level moisture	
11	8.6 µm		8.70 μm	cloud phase, SO2	
12	9.6 µm		9.66 µm	ozone content	Infrared
13	10.4 μm	10.8 µm	10.8 µm	cloud imagery, information of cloud top	
14	11.2 μm			cloud imagery, sea surface temperature	
15	12.4 μm	12.0 μm	12.0 µm	cloud imagery, sea surface temperature	
16	13.3 μm		13.4 µm	cloud top height	

Each band (channel) has different properties, as shown in the left figure.

Note:

• In this presentation, some channel length use "MSG".

•Some band length of MSG are different from "Himawari-8".

There are too many channels!

The **RGB** technique is ...

- Simple process by composition of images enable to create RGB imagery.
- Various information are derivable by one RGB image.
- RGB imagery retain "natural texture" of single channel images.
- → Various information can be derived by colorizing and composing imagery.

Advantage of RGB image

• Without RGB image...

With RGB image...

Red: Deep precipitating cloud top with large ice particles

Yellow: Cb cloud with strong updrafts and severe weather

Easy to understand!

Understanding RGB concept

Find "Hot", "Juicy", "Vegetable" buns!

... It is possible to find, but a little troublesome!

Find "Hot", "Juicy", "Vegetable" buns!

through "**Hot**" vision glasses

Find "Hot", "Juicy", "Vegetable" buns!

Use Colors! through through "Juicy" vision glasses "Vegetable" vision glasses

Let's color each pair of glasses in **red**, **green**, and **blue** !

RGB composite

Hot, Juicy, Vegetable buns appear <u>white</u> and you can find it **at a glance**!

Hot and Vegetable buns, but not Juicy (dried?)

Hot and Juicy, but not Vegetable buns Juicy and Vegetable buns, but not Hot (Cold?)

Application to Satellite Imageries

VIS imagery

Thicker clouds looks whiter

<u>"High cloud" vision glasses</u> Higher (Lower brightness temperature) clouds looks whiter

IR(11um) imagery

Application to Satellite Imageries

ESCAP/WMO Typhoon Committee Attachment Training 2016 at the RSMC Tokyo

RGB technique

- Allocate the three primary colors of red, green and blue for multiple bands of satellite images and compose them
- Since various information are derivable by one RGB composite imagery, it is very useful for monitoring by forecasters
- The European Organization for the Exploitation of Meteorological Satellites has been developing the composites (EUMETSAT recipes)

4. RGB Imageries

- Introduction to RGB Imagery
- Himawari-8 RGB Imageries
 - ✓ Natural Color RGB
 - ✓ Airmass RGB
 - ✓ Night Microphysics RGB
 - ✓ Day Convective Storms RGB
 - ✓ Differential Water Vapor RGB

RGB recipes

Day Snow-Fog Day Convective Storm Dust Airmass https://www.data.jma.go.jp/mscweb/data/himawari/sat_img.php?area=fd_¹⁵

RGB recipes

Day Snow-Fog

4.Day Convective Storm

Dust

2.Airmass

Another RGB recipe: 5.Differential Water Vapor RGB

4. RGB Imageries

- Introduction to RGB Imagery
- Himawari-8 RGB Imageries
 - ✓ Natural Color RGB
 - ✓ Airmass RGB
 - ✓ Night Microphysics RGB
 - ✓ Day Convective Storms RGB
 - ✓ Differential Water Vapor RGB

Meteorological Satellite Center (MSC) of JMA

Day Natural Colors RGB Detection of snow/ice, vegetation and clouds

Meteorological Satellite Center, JMA

What's Day Natural Colors RGB?

Range : $0 \sim 100$ [%] Gamma : 1.0

B : B03(VS 0.64) Range: 0~100 [%] Gamma : 1.0

- $\checkmark\,$ Detection of vegetation, desert and snow/ice areas
- ✓ Distinguish between ice and water clouds
- ✓ Daytime only

Characteristics and Basis of Three Components

Interpretation of Colors "Day Natural Colors"

High-level ice clouds

Low-level water clouds

Ocean	Vegetation	Desert	Snow

Note: Based on SEVIRI/EUMETSAT interpretation

Blue: 0.6 *µ* m B03

Blue: 0.6 *µ* m B03

Basis of snow/ice detection on RGB

Day Natural Color RGB image.. It looks very similar to what we see by our eye, But we can find snow (and vegetated area) easily!

Example of Day Natural Colors RGB

Vegetation, Snow/Ice Covered Area (Vicinity of China and Mongolia)

Vegetation appears green Desert or bare ground appear brown

Day Natural Colors RGB Detection of snow/ice, vegetation and clouds Summary

- ✓ Available to distinguish vegetation, desert and snow/ice
- Easy to distinguish between high-level ice clouds and lowlevel water clouds
- ✓ Day-time only

Typhoon JEBI (T3021) 00UTC 3 September, 2018

4. RGB Imageries

- Introduction to RGB Imagery
- Himawari-8 RGB Imageries
 - ✓ Natural Color RGB
 - ✓ Airmass RGB
 - ✓ Night Microphysics RGB
 - ✓ Day Convective Storms RGB
 - ✓ Differential Water Vapor RGB

Meteorological Satellite Center (MSC) of JMA

Airmass RGB Analysis of air mass and jet stream

Meteorological Satellite Center, JMA

Airmass

• R : WV6.2(B08)-WV7.3(B10)

Range : -25.8~0.0 [K] Gamma : 1.0

• G : IR9.6(B12)-IR10.4(B13)

Range : -41.5~4.3 [K] Gamma : 1.0

• B: WV6.2(B08)

Range : 208.0~242.6 [K] Gamma : 1.0

- Applications
 - Air mass(cold/warm) analysis
 - Jet stream analysis related to upper vortices

Airmass

WV6.2(B08)-WV7.3(B10)

IR9.6(B12)-IR10.4(B13)

WV6.2(B08)

Himawari-8 Apr. 6 2016 11:55 UTC

Interpretation of Colors for "Airmass"

Thick, high-level clouds

> Thick, mid-level clouds

JET	Cold Airmass	Warm Airmass (High humidity at upper tropopause)	Warm Airmass (low humidity at upper tropopause)
-----	--------------	--	---

Interpretation courtesy EUMETSAT

Airmass

Himawari-8 Apr. 10 2017 11:55 UTC

Tropical version of Airmass RGB (Overshooting Tops RGB)

Presentation@RGB Experts and Developers Workshop 2017 "Tropical versions of the Airmass, Night Microphysics and Convection RGBs" by Dr. Kerkmann (EUMETSAT)

Tropical version of Airmass RGB tuned for Himawari-8

Case study of Cyclone approaching Tonga, February 11, 2018

Himawari-B AHI 2018.02.12 02:00:30UTC		
Tropical Airmass RGB (JMA tropical version tuned using recent tuning method (2017).)	Range	Gamma
IR(WV)6.2 – IR10.4 BTD	-25.8 to 4.7	1.0
IR9.6 –IR10.4 BTD	-31.2 to 25.5	0.5
IR(WV)6.2 BT	190.2 to 242.6K	1.0

Comparison of Tropical version vs Normal Airmass RGB

Clearer overshooting tops and very high cloud area

Tropical Airmass RGB (JMA tropical version tuned using recent tuning method (2017).)	Range	Gamma	Airmass RGB (JMA version tuned using recent tuning method (2017).)	Range	Gamma
IR(WV)6.2 – IR10.4 BTD	-25.8 to 4.7	1.0	IR(WV)6.2 – IR(WV)7.3 BTD	-25.8 to 0	1.0
IR9.6 –IR10.4 BTD	-31.2 to 25.5	0.5	IR9.6 –IR10.4 BTD	-41.5 to 4.3	1.0
IR(WV)6.2 BT	190.2 to 242.6K	1.0	IR(WV)6.2 BT	208 to 242.6K	1.0

Airmass (summary)

This RGB scheme is...

- available for air mass analysis
- available for jet stream analysis
- available day and night
- available for detection of overshooting tops of cumulonimbus and very high cloud area by threshold adjustment of parameters

4. RGB Imageries

- Introduction to RGB Imagery
- Himawari-8 RGB Imageries
 - ✓ Natural Color RGB
 - ✓ Airmass RGB
 - ✓ Night Microphysics RGB
 - ✓ Day Convective Storms RGB
 - ✓ Differential Water Vapor RGB

Meteorological Satellite Center (MSC) of JMA

Night Microphysics RGB Nephanalysis in night time

Meteorological Satellite Center, JMA

Meteorological Satellite Center (MSC) of JMA

What's Night Microphysics RGB? 2015-02-16 10UTC

G : B13(IR 10.4)-B07(I4 3.9) Range : 0~10 [K] Gamma : 1.0

B : B13(IR 10.4) (Reverse) Range : 243~293 [K] Gamma : 1.0

Interpretation of Colors for "Night Microphysics"

Ocean

Note: Based on SEVIRI/EUMETSAT interpretation

Example of Night Microphysics RGB Fog/Low-level Clouds of "Setonai-kai (Inland Sea of Japan)"

(Lower right) Fog/ low-level clouds were observed at some stations (around red oval). However, fog/ low-level clouds are not clear in the IR image.

(Upper and lower left) Smooth, greenish white areas in Night Microphysics RGB correspond to whitish fog/ low-level clouds in B13-B07 differential image.

Tropical version of Night Microphysics RGB

Presentation@RGB Experts and Developers Workshop 2017 "Tropical versions of the Airmass, Night Microphysics and Convection RGBs" by Dr. Kerkmann (EUMETSAT)

EUMETSAT

Comparison of Tropical version vs Normal Night Microphysics RGB

Better contrast for fog/ low cloud !

	Tropical Night Microphysics RGB (JMA tropical version tuned using recent tuning method (2017).)	Range	Gamma	Night Microphysics RGB (JMA version tuned using recent tuning method (2017).)	Range	Gamm	а
	IR12.4 – IR10.4 BTD	-7.5 to 3.0	1.0	IR12.4 – IR10.4 BTD	-7.5 to 3.0	1.0	
ſ	IR10.4 – IR3.9 BTD	-2.9 to 2.2	1.3	IR10.4 – IR3.9 BTD	-2.9 to 7.0	1.0	
	IR10.4 BT	273.3 to 300.1K	1.0	IR10.4 BT	243.7 to 293.2K	1.0	

Night Microphysics RGB Summary

This RGB scheme is ...

- effective for low cloud detection in night time (especially St/Fog)
- effective for distinction of thick Cb and low level cloud (Fog/St) in night time

4. RGB Imageries

- Introduction to RGB Imagery
- Himawari-8 RGB Imageries
 - ✓ Natural Color RGB
 - ✓ Airmass RGB
 - ✓ Night Microphysics RGB
 - ✓ Day Convective Storms RGB
 - ✓ Differential Water Vapor RGB

Meteorological Satellite Center (MSC) of JMA

Day Convective Storm RGB Detection of Cumulonimbus Cloud

Meteorological Satellite Center, JMA

What's Day Convective Storm RGB?

R : B08(WV6.2) – B10(W3 7.3) Range : -35~5 [K] Gamma : 1.0

G : B07(I4 3.9)-B13 (IR10.4) Range : -5~60 [K] Gamma : 0.5

B : B05(NIR1.6)-B03(VIS0.6) Range : -75∼25 [%] Gamma : 1.0

Interpretation of Colors for "Day Convective Storms"

Ocean

Note: Based on SEVIRI/EUMETSAT interpretation

Land

Red Beam (for thick upper cloud detection)

Important features: (Thick) upper cloud → smaller difference (bright) (Thick) lower cloud → larger difference (dark)

Green Beam (for small droplets cloud detection)

Important features: Small cloud droplets (with ice phase) → large difference (bright) Large cloud droplets with ice phase → smaller difference (dark)

Blue Beam (for ice cloud detection)

Important features: Water Cloud → smaller difference (bright) Ice Cloud → large (negative) difference (dark)

RGB composite

Cb cloud with strong updrafts and severe weather

Thick, high, small droplets and ice cloud is shown as yellow!

Deep precipitating cloud

Thin Cirrus cloud (Large ice particles)

Thin Cirrus cloud (Small ice particles)

Each beam represents..

Meteorological Satellite Center (MSC) of JMA Slide from: Australian VLab Centre of Excellence; National Himawari-8 Training Campaign: SevereStormRGBA Why the cloud of "thick, high, small droplets, ice" corresponds to convective storm? Bureau of Meteorology Freezing temperature Strengthen the updraft 1) Less time to grow by condensation 2) Supersaturation w.r.t. liquid water so smallest drops Large updraft restrains the steady growth of the cloud droplets from the small water droplets! Land Ocean Yellow is made by mixing red and green **Combining beams**

image from "Understanding Convective Clouds through the eyes of MSG", J. Kerkmann EUMETSAT

- Magenta is made by mixing red and blue
- Cyan is made by mixing green and blue 52

(animation)

Tropical version of Day Convective Storms RGB (Convection RGB)

Presentation@RGB Experts and Developers Workshop 2017

"Tropical versions of the Airmass, Night Microphysics and Convection RGBs" by Dr. Kerkmann (EUMETSAT)

Tropical version of SEVIRI Convection RGB				
	Standard	Tropical		
R WV6.2 - WV7.3	-35 to +5 K	-35 to +5 K		
G IR3.9 - IR10.8	-5 to +60 K Gamma 0.5	-5 to +75 K Gamma 0.33		
B NIR1.6 - VISO.6	-75 to +25 %	-75 to +25 %		
		EUMETSAT		

Tropical version of Day Convective Storms RGB tuned for Himawari-8

Case study of Cyclone approaching Tonga, February 11, 2018

Tropical Day Convective Storms RGB (JMA tropical version tuned using recent tuning method (2017).)	Range	Gamma
IR(WV)6.2 – IR(WV)7.3 BTD	-36 to 5	1.0
IR3.9 –IR10.4 BTD	-1 to 76	0.33
NIR1.6-VS0.64 REFL	-80 to 25%	0.95

Comparison of Tropical version vs Normal Day Convective Storms RGB

Appearance of saturated yellowish areas seems to be improved.

١	Tropical Day Convective Storms RGB (JMA tropical version tuned using recent tuning method (2017).)	Range	Gamma	Day Convective Storms RGB (JMA version tuned using recent tuning method (2017).)	Range	Gamma
IR	(WV)6.2 – IR(WV)7.3 BTD	-36 to 5	1.0	IR(WV)6.2 – IR(WV)7.3 BTD	-36 to 5	1.0
	IR3.9 –IR10.4 BTD	-1 to 76	0.33	IR3.9 –IR10.4 BTD	-1 to 61	0.5
	NIR1.6-VS0.64 REFL	-80 to 25%	0.95	NIR1.6-VS0.64 REFL	-80 to 25%	0.95

Day Convective Storm RGB Detection of Cumulonimbus Cloud

- ✓ Useful to enhance deep convective clouds which have a potential to cause severe phenomena (gust, tornado etc.)
- \checkmark Especially useful for identifying Cb with strong updraft
- ✓ Daytime only

4. RGB Imageries

Introduction to RGB Imagery

- Himawari-8 RGB Imageries
 - ✓ Natural Color RGB
 - ✓ Airmass RGB
 - ✓ Night Microphysics RGB
 - ✓ Day Convective Storms RGB
 - ✓ Differential Water Vapor RGB

Meteorological Satellite Center (MSC) of JMA

Differential Water Vapor RGB Detection of the water vapor distribution

Meteorological Satellite Center, JMA
Differential Water Vapor RGB

- Colorized WV image is useful to grasp the water vapor distribution of upper level. Each WV image is difficult to derive lower level water vapor information.
- Water Vapor RGB has information of lower level water vapor distribution (e.g. different moisture profile).
- JMA employs this RGB image to interpret the environmental condition of typhoon which usually brings negative impact to the development of typhoon. Ex. Water Vapor RGB product for typhoon monitoring

23:44UTC September 13, 2017 Typhoon Talim (1718) and Typhoon Dokusuri (1719)

Advantages of RGB

- Advantages
 - Simple process by composition of images enable to create RGB composite imagery.
 - Various information is derivable by an RGB composite imagery.
 - RGB composite imageries are helpful to look for early indications of tropical cyclogenesis or improved organization.
- Drawback
 - A color doesn't always represent to single phenomenon.
 - Distinction by moving images, etc. is required according to the situation. Skill of image analysis is required.

Comparison of Tropical version vs Normal Day Convective Storms RGB

Reshown slide

For example, in case of tropical cyclone, deep convective cloud with strong updrafts is difficult to distinguish unless color adjustment is carried out.

Real-time RGB images on JMA/MSC website

References

WMO RGB Experts and Developers Workshop 2017

• "Tropical versions of the Airmass, Night Microphysics and Convection RGBs", J. Kerkmann (EUMETSAT)

http://www.wmo.int/pages/prog/sat/meetings/documents/RGB-WS-2017_Doc_01b_Kerkmann-tropical-rgbs.pdf

• "Adjusting SEVIRI RGB recipes for AHI", H. Murata and A. Shimizu (JMA) http://www.wmo.int/pages/prog/sat/meetings/documents/RGB-WS-2017_Doc_01a_Adjusting-SEVIRI-RGB-recipes-for-AHI-share.pdf

Next to Usage of Himawari-8 and -9 Products for typhoon

Contents

- 1. Overview of Himawari-8 and -9
- 2. Satellite derived products
- 3. Target Area observation for HimawariRequest
- 4. RGB Imageries
- 5. Usage of Himawari-8 and -9 Products for typhoon

Himawari-8 Geophysical Products

Gridded Cloud Info

Objective using Himawari-8 and -9 products

- 1. Improvement of forecasts for NWP systems
- Data assimilation using CSR and AMV products
- Expected to improve on heavy rain forecasts and typhoon track forecasts
- 2. Improvement of warnings and advisories for typhoon information on a real-time basis
- Usage of Sea Surface AMV product
- Expected to improve for typhoon analysis and forecasting skills

Usage of Himawari-8 and -9 Products for typhoon

CSR
AMV
Sea Surface AMV

Clear Sky Radiance (CSR)

> Area averaged clear sky brightness temperature

- All IR bands (3.9, 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, 13.3 μm)
- ✓ Full disk, **hourly produced** and distributed via GTS mainly for NWP community
- ✓ Spatial resolution (averaging size): 16 x 16 pixel (IR) (i.e. <u>32 x 32 km</u> @SSP)
- ✓ **<u>Band dependent</u>** clear pixel ratios for clear pixel detection
- $\checkmark\,$ Provided to NWP centers via GTS and WIS service

Impact of CSR data assimilation for NWP

Zonal average monthly mean difference in the specific humidity field for analysis, mean specific humidity field and analysis increment for July 2015.

(a) Mean difference in the specific humidity field between TEST and BASE analysis, (b) as per (a), but for the difference between CNTL and BASE analysis. (c) Mean specific humidity field of BASE analysis, (d) mean analysis increment for specific humidity of BASE. Units are g/kg.

Impact of CSR data assimilation for NWP

Case study of a heavy precipitation event for Japan by typhoon

Comparison of total precipitable water vapor analysis((a) - (c), (e),(f)) on 12 UTC September 9 2015.

(d) Surface weather chart for 00 UTC on September 10 2015.

The total precipitable water vapor unit is mm.

The contrast of the water vapor field along the moist air flow was remarkable in TEST.

(Kazumori, M. 2018)

Impact of CSR data assimilation for NWP

Case study of a heavy precipitation event for Japan by typhoon

Comparison of three-hour cumulative rainfall forecasts for 15 UTC on September 9 2015. The forecast period is three hours and the unit of rainfall is mm/3 hr.

The use of CSR data generally increased the concentration of precipitation. The improvement in TEST was much greater.

(Kazumori, M. 2018)

Usage of Himawari-8 and -9 Products for typhoon

CSR
AMV
Sea Surface AMV

Atmospheric Motion Vector (AMV)

Himawari-8 AMVs

derived from new algorithm (Shimoji 2014, IWW 12)

MTSAT-2 AMVs

derived from heritage algorithm (Oyama 2010, MSC technical report)

Himawari-8 and MTSAT-2 IR AMV (QI>60, 17 UTC on 14 January 2015)

Impact of AMV data assimilation for NWP

Zonal mean meridional cross sections for analysis field differences of U- and V- component winds around Japan (from 110 to 160° E, 20 to 50° N) between TEST and CNTL for summer 2015.

Positive values (red) indicate TEST (with Himawari-8 usage) numbers larger than CNTL (MTSAT-2 usage) numbers, while negative values (blue) indicate the opposite.

Modification of atmospheric general circulation

(Yamashita, K. 2018)

Impact of AMV data assimilation for NWP

Typhoon track TEST (red), CNTL (blue) and BST (black) forecasts for Nangka (T1511) initialized at 12 UTC on 13 July 2015

Average typhoon track forecast errors for summer 2015. The red line is for TEST values, the blue line is for CNTL values, and the red dots are sample data numbers. Error bars represent a 95% confidence interval.

(Yamashita, K. 2018)

Impact of AMV data assimilation for NWP

Case study of a heavy precipitation event for Japan by typhoon

(with MTSAT-2 usage)

(with Himawari-8 usage)

Three-hour forecasts from TEST and CNTL experiments and radar-rainfall composite precipitation (OBS) <u>initialized at 03 UTC on September 9 2015</u> in a case study of Kanto and Tohoku heavy precipitation in eastern Kanto. Blue line areas represent remarkably heavy precipitation.

(Yamashita, K. 2018)

Usage of Himawari-8 and -9 Products for typhoon

CSR
AMV
Sea Surface AMV

Low level AMV for typhoon analysis

Forecasters estimate intensity of tropical cyclones using surface wind information. In-situ observations such as vessels and buoys are sparse especially on the ocean. ASCAT ocean vector winds are very useful for the analysis, but the number of observations is not sufficient.

If we can estimate sea surface wind from AMV assigned to low altitude, it will be helpful for typhoon analysis.

Use of Sea Surface AMV at RSMC Tokyo – Typhoon Center

RSMC Tokyo - Typhoon Center Japan Meteorological Agency

JMA has started the operational use of sea surface AMVs

Since when

Meteorological Satellite Center of JMA has started routine provision of sea level AMVs to the RSMC Tokyo -Typhoon Center from June 2018.

Accordingly, the Center has started using the AMVs operationally.

Product details

The AMVs are for areas ~1,000 km square around each tropical cyclone.

AMVs from full-disk data are available twice/hour, while AMVs from regional scanning are available every 10 min.

Near future plan

JMA is planning to provide the AMVs via Himawari Cast and WIS in the near future.

Achievement with sea surface AMVs Based on the following findings,

- Low-level AMVs derived from Himawari-8 and sea surface winds are well correlated around tropical cyclones;
 Sea surface wind ~ 0.76 × low-level AMV, as a result of primary regression
- Himawari-8 provides data for wide area with high frequency that has enough accuracy compared with ASCAT observation data*
 * ASCAT observes a certain fixed area twice a day and it cannot observe right below the satellite.

RSMC Tokyo - Typhoon Center has started the operational use of sea surface AMVs in the vicinity of tropical cyclones in June, this year.

The use of sea-surface AMVs is a useful method to estimate strong wind area due to tropical cyclones.

Example of operational use of sea-surface AMVs

~ Sea-surface AMVs estimated from Himawari-8 low-level AMVs ~

TY1721: LAN

Example of operational use of sea-surface AMVs - #1 -

~ Sea-surface AMVs estimated from Himawari-8 low-level AMVs ~

TY1721: LAN

Example of operational use of sea-surface AMVs - #1 -

~ Sea surface winds from ASCAT~

TY1721: LAN

Example of operational use of sea-surface AMVs - #1 -

~ Overlapped sea-surface AMVs and sea surface winds from ASCAT ~

TY1721: LAN

Circle with solid line: area of strong winds at 50 kt or higher Circle with dashed line: area for winds at 30 kt or higher

- Sea-surface AMVs estimated from Himawari-8 low-level winds are effective for grasping the wind field in the vicinity of tropical cyclones.
- > ASCAT is useful for observing sea surface winds even under dense clouds.

JMA overlaps sea-surface AMVs and ASCAT sea surface winds when available.

Example of operational use of sea-surface AMVs - #2 -

~ Sea-surface AMVs estimated from Himawari-8 low-level AMVs ~

27 September 2018

Example of operational use of sea-surface AMVs - #2 -

~ Sea-surface AMVs estimated from Himawari-8 low-level AMVs ~

27 September 2018

Comparison of accuracy between bands

Sea surface AMVs estimated from B03 (VIS, $0.64\mu m$) have the highest accuracy; however they are available only during daytime.

Sea surface AMVs estimated from B07 (SWIR, $3.9\mu m$) have low accuracy around sunrise and sunset.

Notes in the use of sea surface AMVs

- For areas near the center of TCs, low-level AMVs are not always available as clouds are thick (i.e., due to central dense overcast). Accordingly, sea surface AMVs are not obtained constantly in the areas, either.
- Less data were available for the investigation of wind speed correlation between winds from ASCAT and low-level AMVs at speed ≥ 20 m/s.

→ It is necessary to take into consideration about the uncertainty in accuracy of estimated sea surface AMVs for areas near the center of TCs. Sea surface Standsurfational Himadvário ShBQS CoA/Hevel AMVs

Notes in the use of sea surface AMVs

Estimated sea surface AMVs may have gap with the actual winds when inversion layer, with very high wind speed at around 700 hPa and low wind speed on surface, exists.

Contents

- 1. Overview of Himawari-8 and -9
- 2. Satellite derived products
- 3. RGB Imageries
- 4. Target Area observation for HimawariRequest
- 5. Usage of Himawari-8 and -9 Products for typhoon

If you have any questions please feel free to contact us. **Contact**:jma-msc-contact@ml.kishou.go.jp

References

Kazumori, M., 2018: Assimilation of Himawari-8 Clear Sky Radiance data in JMA's global and mesoscale NWP systems. J. Meteor. Soc. Japan, 96B, <u>https://doi.org/10.2151/jmsj.2018-037</u>.

Yamashita, K., 2018: Operational assimilation of Himawari-8 Atmospheric Motion Vectors into the Numerical Weather Prediction Systems of the Japan Meteorological Agency. J. Meteor. Soc. Japan (submitted).

