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Part 1.

Stakeholders



It's Complicated: Don’'t Go it Alone

hurricanes.gov/surge W @NHC_Surge




Stakeholders

 Federal

— National Oceanic and Atmospheric Administration (NOAA)

» National Weather Service (NWS)

» National Ocean Service (NOS)

— Army Corps of Engineers (ACE)
— Federal Emergency Management Agency (FEMA)

— US Geological Service (UsSGS)

 State and Local



L esson Learned

e Stakeholder:

— ldentification. Must be proactive and thorough,

particularly at the local level.

— Coordination. Must be formal and continuous.

— Communication. Must be formal, continuous,

and clear; training Is essential, particularly for

those new to storm surge.



Storm Surge Fast Draw

https://youtu.be/bBa9bVYKLPO



https://youtu.be/bBa9bVYKLP0
https://youtu.be/bBa9bVYKLP0

Part 2:

Models and Products



Deep Water

a. Top view of Sea Surface b. Side view of Cross Section “ABC”
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Landfall

a. Top view of Sea Surface and Land b. Side view of Cross Section “ABC”

Sand Dunes
on Barrier Wind

STORM SURGE
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. Wind setup — Increase in water level due to the force of
the wind on the water

. Geostrophic adjustment — Adjustment due to longshore
current

Pressure setup — Increase in water level due to lower
atmospheric pressure

. Tide

. Wave setup — Increase due to breaking waves (wave
setup and run-up)

. Steric setup — Increase due to water temperature
Nonlinear advection
Dissipation terms



SLOSH: Sea Lake and Overland
Surges from Hurricanes

% A computationally efficient finite differencing model that predicts
overland flooding from storm surge
* Parametric wind model

» Utilizes “forecastable” hurricane parameters of position, delta pressure
and radius of maximum winds

» Solves a differential equation for wind speed and direction incorporating
forward speed into the asymmetry

» Universal (not “calibrated” to location)
Structured (Arakawa B) Grid with finer resolution overland

Sub-grid elements to model rivers and streams, Barriers, Cuts,
Channel Flow and Increased friction for trees and mangrove

4

L)

*

4

L)

*

Camille

SPLASH — Special Programto | SLOSH — Sea, Lake and Overland Surges from Hurricanes
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SLOSH Equations
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Where U and V are the components of transport, g is the gravitational constant, D is the depth of
quiescent water relative to datum, h is the height of water above datum, h is the hydrostatic water

height, fis the Coriolis parameter, x; and y; are the components of surface stress, and 4,, 4;, B, B,
C,, and C; are the [Jelesnianskiet al. 1992].

The surface stress, ¢, is an important term in the equations of motion. Generally, the wind stress
per unit mass on the sea surface is expressed as:

- pa — e
tayt) = Cp o (Wexy.o) | Weeye)

Where Cj, is the drag coefficient, p,, and p, are the densities of water and air, the W is the vector

wind. The z coordinate of the stress term is z = z; where z; is the distance above the sea surface
(typically 10 m) and where wind sources retained at the surface utilize a constant pressure to be

converted to zg[Jelesnianski et al. 1992].



SLOSH Winds

» Parametric wind model
“ Utilizes “forecastable” hurricane parameters (Does have errors)
“ Solves a differential equation for wind speed and direction
“ Forward speed is incorporated into asymmetry
“ Tested on many past hurricanes
“* Universal (not “calibrated” to location)

> Inputs
% Track => NHC advisory
s Current Rmax => estimated from available obs
¢ Current DelP => NHC Advisory

*» Forecast Rmax, DelP => estimated by NHC's storm surge
specialists
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Extra-Tropical Storm Surge (ETSS)

* Modification of SLOSH to use 0.5 degree Global
Forecast System (GFS) winds and pressure as input

 Intended for large extra-tropical storms rather than
hurricanes (aka tropical storms)

 Does not include Waves and River Flow

* It's been applied to
— Bering, Beaufort, Chukchi Seas, AK (Oct 2015)
— Gulf of Alaska (Apr 2008); West Coast (Feb 2011)
— East Coast (Feb 2009); Gulf of Mexico (Jan 2011)

Camille

SPLASH — Special Programto | SLOSH — Sea, Lake and Overland Surges from Hurricanes

List Amplitudes of Surges from .
Hurricanes ETSS — Extra Tropical Storm Surge
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&) Storm Tide = Storm Surge + Tide

HIGH TIDE
MEAN TIDE (MSL)

LOW TIDE
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SLOSH + Tides

Basin: Biscayne Bayvd <mi3>

in: Biscayne Bayvd <mi3> Storm: C:/sloshé pkg/sloshdsp/rexfiles/andr hmiZ
Palm Beach Palm Beach

Palm Beach

B d B d i B d
rowar rowar *| Fort Lauderdale Tl ""| Rewsi lbemnlaniell

Extract harmonic constltuents at every SLOSH grld ceII from a
global or higher resolution model

Camille
SPLASH — Special Programto | SLOSH — Sea, Lake and Overland Surges from Hurricanes Tide
hijtriirgrt:gtsudes of Surges from ETSS — Extra Tropical Storm Surge Tide
e —— —— —————
1970 1980 1990 2000 2010 17



SLOSH + Tides

« Version 1 - Addition after model run
— Issue: Tide not considered during inundation step
— Issue: Extrapolated tidal values overland

 Version 2 - Addition and subtraction of tidal field at each

time step
H(ty) = Tide(ty)
H(t,) = SLOSH (H(t,_,)) — Tide(t,_,) + Tide(t,)

— Issue: Wetting/Drying impacts computation
— Issue: Extrapolated tidal values overland

« Version 3 — Tide as a boundary condition
— Issue: Getting tide through narrow mouths into estuaries
— Issue: Spin up time required to initialize transport variables
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Tropical and Extra-Tropical
Storm Surge Products

Tropical Extra-Tropical

Storm Surge to Coastline

ETSS (1995 — 2014)
SPLASH (1972 — 1984) ESTOFS (2012 —)
ETSS 1.5 (2014 — 2015)

8-

Overland Storm Surge

SLOSH (1984 —) ETSS 2.0 (May 2015)

P-Surge 1.0 (2008 — 2013) | No Real-Time Ensemble
MEOW/MOM (1986 —) No Climate Ensemble

Overland Storm Surge + Gridded Tide

SLOSH + Tide (2012 —) ETSS 2.1 (Oct 2015)

P-Surge 2.0 (2014 — 2015) P-ETSS (2017 -)
P-Surge 2.5 (May 2015)
No Climate Ensemble No Climate Ensemble

19



Total Water Level

Storm surge + Tides + Waves + Freshwater
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&) Waves — Relative Contribution

Resio (2012)

| \ \ \
On steep slopes, waves may be the

g 08 dominant surge generator.
; ' Examples: reefed islands and many rocky
3 coastlines.
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Wave Runup
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SLOSH + Waves
(SWAN, GLW)

SLOSH + SWAN coupling (Example of R20)

* Developed by Don Slinn (University of FL) in 2009
 Worked on by Cristina Forbes (NHC)

« Used for Puerto Rico potential storm surge inundation

Real Time Application?

« SWAN (39 gen. wave model) takes too long

« Great Lakes Waves (GLW) a recently retired 2" gen. wave model
« Dongming Yang is working to couple GLW to SLOSH

Carnil GLW
amille

SLOSH + SWAN
SPLASH — Special Programto | SLOSH — Sea, Lake and Overland Surges from Hurricanes Tide
List Amplitudes of Surges from .
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SLOSH
Room for Improvement

Surge Component

[ Constant bottom friction term
 Constant wind drag coefficient in air

O Constant eddy stress coefficient in water

L Coriolis term is generally omitted for lakes and inland inundation but
retained for large amplitude surges if inundation covers a large area

O 6. Steric setup — Increase due to water temperature
O 7. Nonlinear advection term
O 8. Dissipation term

Other
O River — Allow river boundary condition
O Initialization — Initialize based on observations

0 Computation (runtime) — Use multiple CPU’s
25



Requirements

1 hour post forecast release

Inundation to the 50’ contour line (populated

areas, evacuation routes, sensitive infrastructure)

96-hour evacuation window for some cities
Communication via preferred platforms

Total Water Level (surge + tide + wave + river)



L esson Learned

* Avallable resources drive development as
much as, If not more than, requirements:
— Dedicated Personnel

— Computational Resources



Lesson Learned - Surge is NOT
directly correlated with intensity

No more surge In the Saffir-Simpson Scale!

(ategory  Central Presure  Hinds (mph) firg Damage
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L esson Learned

e |ke 2008: Communicate Above Ground Level

(AGL) to public and Above Datum to scientists

« Best numerical model still needs good inputs:
— Bathymetry and Topography
— Wind forcing

— Observations



Part 3:

Basins



SLOSH Basin

|
Tropical basins maintained B
by the National Hurricane water Surface
Program (update cycle =~ 2Poveasquare

approximately 6 years) 'Igroé}?lfsport

it Step Rise

Structured, Arakawa B-Grid

* Heights at the center and
transports on the corners

i i Surge Points
 Finer resolution overland, and J

coarser offshore DATUM
. Locally orthogonal Sub-grid elements:
1 dimensional flow for rivers and streams
 Barriers

« Cuts between barriers
« Channel flow with chokes and expansions
 Increased friction for trees and mangrog1es
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® SLOSH Display
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SLOSH Basin

Display Change-Basin
Basin: New Orleans (2006) v3 <mslk>

Select-Storm  Animate Tides Download Help
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Extra Tropical Basins

Arctic Alaska (eotz)

Bering Sea, Alaska {(enom)

Gulf of Alaska (egoa)

West Coast (ewct)

East Coast (eex2)

Gulf of Mexico (egm3)
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Operational SLOSH Basins by Vertical Datum

Updated February 2013
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L esson Learned

« Basins need a maintenance path

* Basins need to be 2.5 times the size of the
storm as evidenced by Hurricane Ike.
— Super basins lead to run time issues

— Nested approach developed by Huiqging Liu
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@ East Coast and Gulf of Mexico
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- A sample of finer overland
I tropical grids

- nested within the coarser
I extra-tropical grids
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_ Extra-tropical grids provide
| a boundary condition for
tropical grids
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Hurricane lke

Storm: C:/slosh.pkg/sloshdsp/rexfiles/2008lke_gl2 BD_egl3 To.rex
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lke2008 modeled by
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Part 4.

Operational Timeline
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Planning / Mitigation (>120 hr

- MOMs (Maximum Of
the MEOWS)

- MEOWSs (Maximum Response (<48hr)

Envelope Of Water)

- NHC Advisory/NWS
Local Statements

- MOMs

- Probabilistic Storm
Surge (P-Surge)

- MEOWSs



Part 5:

Raising Awareness
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L esson Learned

* While the threat posed by storm surge Is
well-understood in academic and
professional circles, more needs to be done

to educate at risk populations.
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Public Service Announcement

https://vimeo.com/13463438



https://vimeo.com/13463438

Communication:
SLOSH Display Program (SDP)

The SLOSH Display Program is a Geographic Information
System provided by NOAA to

1. Display MEOWSs and MOMs

2. Animate Deterministic Rex Files (real-time and historic)

3. Determine vulnerability of critical locations

4. Educate Emergency Management and others

https://slosh.nws.noaa.gov/sdp/download.php
(User = Gustav2008 ; Pass = 1ke2008)

Camill El
amifie €N MEOW / MOM
SPLASH SLOSH Deterministic Rex Files

B
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https://slosh.nws.noaa.gov/sdp/download.php

Questions?

(Arthur.Taylor@noaa.gov)



