Typhoon Committee Roving Seminar Lao DPR, 4-6 Nov., 2015

Topic C: River and Urban Flash Flood Forecasting and Mitigation (C-2) Rainfall Radar System and Its Utilization for Flood Warning

Nov. 5, 2015

Lee, Dong-ryul Hydro Science and Engineering Division Korea Institute of Civil Engineering and Building Technology

Contents

New Vision of Flood Forecast
Rainfall Radar (RR) System and Operation
RR's Utilization for Flood Warning

1. New Vision of Flood Forecast

Rainfall Characteristics are Changing

More Locally Concentrated Heavy Rainfall

Stronger Rainfall Intensity

Rapid Water Level Rise due to Localized Torrential Rainfall Bringing Secondary Damage due to Landslide

Flood Characteristics are Changing

Typical Flash Flood

Rapid rise of Water Level in a short time (Urban and Mountainous Area)

Difficulties in Evacuating due to Rapid River Flow

Increase of Frequency Exceeding Design Flood 2002 : Typhoon RUSA, Gangnung, 870mm/day(PMP)

- 2006 : Upstream of Han River, Exceeding Design Flood(80yr)
- 2011 : Levee Overtopping in Tributary Rivers

Damage Types are Changing(1/3)

Vehicles Submerged and Casualties in the river

Increasing Use of Waterfront Facilities Railways and Roads around the River Parking Area in flood plane Camping and Performing Area in the Waterfront

Flooded Roads(2011)

Parking Area(Tancheon, 2013)

Damage Types are Changing(2/3)

Submerged Roads and Residential Area

Drainage System with Low Design Rainfall Frequency (5~10yr) Flood Pumping Station with Low Design Frequency (less than 10yr) Flood Damage from the Lack of Urban Drainage Ability

Suwon(2012)

ChunCheon(2013)

Gonjiam(2013)

Busan(2014)

Damage Types are Changing(3/3)

Landslide in the Urban Area

Increasing Damage Scale caused by Localized Torrential Rainfall (ex. 2002: Ty. RUSA, 2003: Ty. MAEMI, 2011: Umyun Mt., 2012: Gunsan)

Umyun Mt.(2011)

Gunsan(2012)

Providing for Flood Forecast & Information

Flood Forecast

One of the Non-Structural Countermeasure Forecasting River Flow Informing Possibility of the Floods in advance

Minimize flood damage

Forecast Size and Generation Time of the Flood

Pre-Information Notice

세계기상기구(World Meteorological Organization, WMO)

Definition of Flood Forecast

Predict Water Level, Stream flow, Occurrence Time, Duration of Floods caused by Rainfall or Snowmelt

Predict River Flow prior to the Floods

Providing for Flood Forecast & Information

Enforcement Rules Article No.23 of River Law in Korea

Flood Forecast is issued If Water Level is Expected to Reach or Exceed at Watch or Warning Level

- 50, 70% of Design Flood, 60, 80% of Design Flood Water Level
- The Current flood Forecast is being Conducted in the Event that the River Overflows its Levee

Enforcement Rules Article No.24 of River Law in Korea

Director General of River Flood Control Office should Announce to Media Agencies, Governmental Agencies and Other Organizations

Issuing Flood Forecast to the Related Organizations

- Sanding FAX, TEXT
- Uploading Website
- Using Phone

Providing for Flood Forecast & Information

Current 43 Flood Waring Stations

Severe Flood Damage Areas During Last 10 years

Providing for Flood Forecast & Information

To Improve Structural Countermeasures, First Thing is to build or Maintain Levees, But...

Informing Possibility of Damage due to Overflow of a levee through flood Forecasting. The Criteria of Watch or Warning Level is too High,

Waterfront, Camping, Performing Areas are already Submerged in Lower Water Level than Watch or Warning Level

Difficulties in Reduction of Flood damage

Need to Provide Flood Risk Information Widely...

Providing Real-Time Water Level, Flow Rate, Release of Dam and Reservoir, Flood Forecast Issues, Inundation and Information to

- Main Road and Railway Control around Rivers
- Management of the Vulnerable Sections
- Waterfront Park, Bicycle Road in the flood Plane
- Pumping Station, Site under Construction, etc

Status of Flood Emergency Response

- Flood Response Activities Start with Preliminary Special Weather Report (Korea Meteorological Administration)

- Flood Forecast Based on a levee is used to Evacuate Residents from the Expected flooded District

- Flood Watch and Warning is used only as Reference Data for Alert Working
- Lack of Prior Preparation about no Damage District
- Various Information, Lack of Conditions Predicted

Improvement of flood forecast

- Providing Flood Risk Information phase with 4 Levels of Flood Emergency Response
- Changing Forecasting Target from Warning station to Spatial Areas -Basin, Administrative District and Vulnerable Areas to the Floods
- Providing Various Guidelines
- Improving Organizational system

Flood Forecast Paradigm is Changing

Changing Focused on People's Life !

Expanding from River to Basin

Forecasting Inundation of the Infrastructure around River

- Main Road, Railway, Bikeway

Expanding Flood Forecast Area to the Administrative District

- Changing from Point(Line) to Space

Expanding Flood Forecast Area to Waterfront Park

- Parking lot, Camping, performing area 16

Securing Lead Time for Flood Response

Focusing on People's Life

Providing Flood Information Customized People's Life
Leisure, Waterfront Activities, Cultural Performing

 Strengthening Cooperation with Related Organizations
Joint Training and Workshops about Hydrological, Weather, Disaster Reduction with Related Organizations

2. Rain Radar System and Operation

Contents

Ш

IV

Flood Forecast needs Radar

Radar -Generals

Dual Polarization Radar

Polarization Radar Operation for Flood Forecasting in Koea

Configuration of Flood Forecast High Resolution Rainfall from Radar

Repeating & Increasing Flood Disasters !

Configuration of Flood Forecast

Target Area River Basin, Mountain Valley, Urban area, etc * Rain gauge , water level, and discharge station, etc

Flood(Run-off) Model Lumped, Distributed, Storage, etc (Hydrometeorology, GIS, Basin Characteristics)

Rainfall Data from Ground Gauges

History of FFS(Flood Forecasting System) in Korea

Radar Gives High Resolution Rainfall Distribution

Recently frequent local heavy rains triggered by climate change causes severe damages.

→ Traditional point rain gauge based flood forecast has shown the limits in space and time resolution

Using rain radar which can observe areal rainfall and rain system evolution, local flash flood forecasting is possible!

Rain radar : ~ 0.1563km²(125m×125m), 2.5 min interval

Radar Gives High Resolution Rainfall Distribution

Comparison between Gauge and Radar Image

General Characteristics of Radar Image

Radar Rainfall Distribution is High Resolution in Space & Time

Able to acquire the rainfall distribution, intensity, movement, development, etc. in real time base

What is radar?Historical evolution of Radar

What is the Radar?

Detection Systems of Targets in the Atmosphere by Radio

Radar is an active remote sensing instrument used for detection and locating targets in the atmosphere and over seas, being utilized in various fields.

Configuration of Radar Rain Observation

What is the Radio ?

Electromagnetic wave : Transverse Wave that is fully explained by Maxwell's four equations

$$\mathsf{E}^{(i)} = \frac{\mathsf{A}(\theta, \phi)}{\mathsf{R}} \exp[j2\pi f(t - \frac{\mathsf{R}}{\mathsf{c}}) + j\psi]$$

A-amplitude, R – range, f – frequency, c – speed of light, ψ – unknown constant phase

THE ELECTROMAGNETIC SPECTRUM

Gigahertz (GHz) 10-9 Terahertz (THz) 10-12 Petahertz (PHz) 10-15 Exahertz (EHz) 10-18 Zettahertz (ZHz) 10-21 Vottahertz (YHz) 10-24

Radar Radio Frequency Band

Radar Frequency Band

Band Designation	Frequency	Wave Length	
VHF	30 – 300 MHz	10 – 1 m	
UHF	300 – 1000 MHz	1 – 0.3 m	Wind Profilers (6m, 75cm, 22cm)
L	1 – 2GHz	30 – 15 cm)	
S	2 – 4 GHz	15 – 8 cm	Rodora for
С	4 – 8 GHz	8 – 4 cm	Precipitation (10,5,3 cm)
X	8 – 12GHz	4 – 2.5 cm	
Ku	12 – 18GHz	2.5 – 1.7cm)	Radars for Cloud or Fog (9mm, 3mm)
K	18 – 27GHz	1.7 – 1.2cm	
Ka	27 – 40GHz	1.2 – 0.75cm)	
How does radar work ?

Sends out pulses of electromagnetic radiation in a narrow beam Radiation scatters off targets, some returns to the radar Radar listens for the return pulse Targets can be weather or any physical object

Measuring Difference between Gauge and Radar

Instantaneous spatial distributions of the precipitation observing with some time interval

Ground Rain Gauge

Continuous (temporal) measurement at a point (spatial)

Ground Rainfall Gauges (GRG) & Rainfall Radar (RR)

GRG(Diamenter: 20 cm) Covering Area in Korea ≒ 166 km²/ 1 station

RR Coverage = 1 km²/ 1Grid

Reflectivity of Imjin RR

Mean Area Rainfall using Radar Rainfall

- Rainfall Estimation in Ungauged Area
- Flash Flood
- Localized Heavy Rainfall
- QPF

Radar Data Quality Problems

Historical Evolution of the Radar

Basic Concepts and observables
 Major characteristics of the applications
 Dual-Pol Data Characteristics

Comparison : Single vs Dual Polarization

Conventional (Single Pol)

Polarimetric Radar

Hydrometeor Classification

Radar Observables(Moments, Parameters)

Images of Radar Observables

Reflectivity(Z)

Z_{DR}

HydroClass

08:55:38 7 JUL 2009

6 Hail Graup 5 Graup 4 Show 3 Rain 1 Hodet

Doppler Velocity

Rain Intensity(2.5)

Spectrum Width

Rainfall(1H)

SQI

Area Rainfall

Improvement of QC and rainfall Estimation

Block diagram of QC Procedures

Rain Radar Network Image Mosaic

Radar Data Composite

Data Analysis and Application System

System configuration and data flow

- QC Rainfall System : preprocessing such as raw data receiving, rainfall, DB input
- Display Analysis System : Radar and Rainfall Image, data processing monitoring

Display and Analysis System

Radar Data and Rainfall Analysis

- Overlapping gauge data and geological information on radar image
- Table and Chart display of rainfall information
- Zooming and topographical display for local analysis

Hail Detection by Hydrometeor Classification

Heavy Snowfall Detection

News for local heavy snow

Benefits from Dual Polarization

Flash Flood Warnings

• Precipitation estimation accuracy improves from ±35% to ±20%

Tornado & Severe Thunderstorm Warnings

- Tornado debris cloud detection improves warning lead time
- Probability of hail detection improves from 88% to 94%
- Probability of hail false alarm improves from 39% to 8%

- Winter weather products

- Snowfall estimation improves
- Detect of rain-snow line more accurately
- Data quality for storm-scale numerical model forecasting
 - Detect 99% of non-meteorological scatterers (such as birds, insects, etc.)
- Estimated \$690 million annual benefit from water management and flash flood forecasts*

*Benefit analysis based on (1) NEXRAD Technical Requirements for Precipitation Estimation and Accompanying Economic Benefits, Hudlow, et. al., 1985; and (2) Dual Polarization Cost Benefit Analysis, Zrnic, 2003

IV Polarization Radar Operation for Flood Forecasting in KOREA

- Radar Networking
- Rainfall Estimation and Error
 Applying to Flood forecasting

56

Polarimetric Radar Networking Milestone of MOLIT

(Phase 1) 6 S-Band Completion until 2015 in major rivers

* Han River(Gari, Yebong), Gum River(Seodae), YoungSan River(Mohu), Nakdong(Bisuel, Soback)

(Phase 2) 5 X-Band Completion until 2017 for blind areas``

* based on the operational experience of S-Band, the locations of X-Band will be adjusted.

Status of Radar Installation of MOLIT

Bisuel RR('09.06, Metstar)

Soback RR('11.11, Metstar)

Mohu RR('14.08, SELEX)

Sedae RR('14.09, SELEX)

Radar System Specifications of MOLIT

Sub-System	Components	Specification	Note	
	Frequency	2850 ~ 2900 MHz	S Band	
Transmittar	Polarization	H+V, H	Dual Polarization	
Iransmitter	Tube	Klystron		
	Peak Power	750KW		
	Dish Size	8.5m	Gain 45dB	
A . 1	Beam width	0.95°		
Antenna	Scan Speed	1 ~ 36°/sec	Max 6rpm	
	Scan Range	AZ 0~360°, EL -2°~92°		
	Receiver Type	Heterodyne, Digital	Dual Channels(H and V)	
Receiver &	MDS	-114dBm		
	Dynamic range	100dB		
	Signal Processor	Digital I/Q	Clutter Suppression	
Data	Moments	Z, V, W, SQI, ZDR, PhiDP, KDP, RhoHV, Hclass	Dual_Pol parameters	
	Time series	Raw I/Q data		

Clear Mode (VCP_C)

range	PW	Tilts	Resolution	Scanning time	Polarization	moments
200Km	2µs	~4 ELs	1° * 250m	150sec	H+V	Dual_Pol parameters

Rain Mode(VCP_R)

range	PW	Tilts	Resolution	Scanning time	Polarization	moments
100Km	1µs	~6 ELs	1° * 125m	150sec	H+V	Dual_Pol parameters

ZDR_CAL Mode(Vertical)

range	PW	Tilts	Resolutio n	Scanning time	Polarization	moments
20Km	1µs	EL 90°	125m	120sec	H+V	Dual_Pol parameters

Radar Scan Mode

Radar Beam heights by Elevation and Range

Data Processing Procedures

Radar Rainfall Conversion Algorithm

1. R(Z) : Z-R relationship(traditional method)

$$R(Z) = 1.70*10^{-2}*Z^{0.714} \longrightarrow Z = 300R^{1.4}$$
2. R(Z_DR) : Bringi and Chandrasekar(2001)

$$R(Z, Z_{DR}) = 6.70*10^{-3}*Z^{0.714}Z_{DR}^{-3.43}$$
3. R(KDP) : Rhyzhkov(2005) (NEXRAD prototype) \longrightarrow Being used in MLTM

$$R(Z) = 1.70*10^{-2}*Z^{0.714}$$

$$R(K_{DP}) = 44.0 | K_{DP} |^{0.822} sign(K_{DP})$$

$$R = \overline{R(Z)} / f_1(\overline{Z_{DR}}) \quad if \ \overline{R(Z)} < 6mm / h$$

$$R = \overline{R(K_{DP})} / f_2(\overline{Z_{DR}}) \quad if \ 6 < \overline{R(Z)} < 50 mm / h$$

 $=10^{0.1\overline{Z}_{DR}(dB)}$

where,

$$f_{1}(\overline{Z_{DR}}) = 0.4 + 5.0 | \overline{Z_{dr}} - 1 |^{1.3} \overline{Z_{d}}$$
$$f_{2}(\overline{Z_{DR}}) = 0.4 + 3.5 | \overline{Z_{dr}} - 1 |^{1.7}$$

Spatial Sampling from VCP data

Spatial radar data to be converted into rainfall

Comparison of all rainfall products from the system

Time series and accumulation of gauge and radar

Radar Rainfall Difference from Gauge

(a) R(Z) : Single_Pol radar rainfall

	A		Standard deviation of fractional difference		
Events(2011)	Average of frac	tional difference			
	Relative(%)	Absolute(%)	Relative(%)	Absolute(%)	
June 22	-16.5	18.3	16.1	18.3	
June 25	3.8	51.4	72.7	51.3	
July 9	-9.2	10.1	12.6	11.9	
August 7	-5.5	13.0	16.4	11.4	
Total Average	-6.9	23.2	29.5	23.2	
(b) R(KDP) : Dual_	Pol radar rainfall	•			
Events(2011)					
June 22	-5.0	12.6	15.8	10.7	
June 25	2.4	8.4	16.2	14.0	
July 9	-0.9	6.6	10.4	8.1	
August 7	2.9	12.9	17.7	12.4	
Total Average	-0.2 -0.2	10.1	15.0	11.3	

3. RR's Utilization for Flood Warning

Applying to Operational Flood Forecasting System

Applying fields of rain radar data

Flash Flood Prediction system

Process of Flash Flood Prediction system

Study Area

Namgang Dam Upstream Area

Characteristics of Namgang dam basinLocationApp. 128°E, 35°NBasin Area2,293 km²Basin Length108 kmElevation45 ~ 1,915 EL.mLand UseMountainAnnual MAP1,514 mm

Available data

Raingauge St.	25
Stage St.	10
Dam	1
Sub-basins	14

Selected events : 16-20, Sep. in 2012

* AE = Aneui, HY = Hamyang, MC = Macheon, IC = Imcheon SC = Sancheon, DS = Danseong, SG = Samga, SA = Shinan TS = Taeseong, CC = Changchon, NGD = Namgang dam

< Study area of Namgang dam site >

Results of FF Prediction System

Threshold Runoff Results of Nakdong-River Basin

Source : Results of IFLOOD project

Meso. TOPMODEL Results for Soil Moisture Accounting

Flash Flood Guidance (FFG) during Typhoon "Sanba"

Temporal Variation of Radar Rainfall

Integrated Operation for Flash Flood Prediction

- Early flash flood prediction using radar QPE information
- Prediction of flash flood threat using QPF from UM and MAPLE

Flash Flood Threat during Typhoon "Sanba"

3D Spatial Display of Flash Flood Prediction Results

Real-Time Results of FFP System

Case of flash flood at some valleys of Mt. Ziri

Real-Time Results of Flash Flood Prediction System

Analysis of Localized Flash Flood Prediction Results

Adjustment Case of FFP Model for Vacationer Safety

Application Results of Radar QPF(MAPLE)

Thanks for your attention

A

-