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Tsinghua University

Flash flood: s o s

» Short duration & high magnitude gggg/r/avm/ﬁlyléerzgﬁgemﬁ o
» Sudden & destructive . .
» Common in mountain streams E ;

» Rainstorm, landslide dam failure,
glacial lake outburst, etc.

Several hours > bankfull dlschrge
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Flash flood hazard?

Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

Serious all over the world!

June 10, 2005: a primary school Shalan Town, Heilongjiang Provmce 105 students were killed.
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Tsinghua University

Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 1: Extreme rainstorm - extreme flash flood
e.g. Increasing extreme weather events due to climate change




Flash flood hazard?

Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 2: Regular rainstorm - extreme flash flood
e.g. exaggerated flooding impacts

1) Impounded water
releases suddenly

Barrier lakes or glacier
lakes outburst.
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Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 2: Regular rainstorm - extreme flash flood
e.g. exaggerated flooding impacts

2) Flood flow is
choked, resulting in
water level rising

Boulders, e
drifting wood, B
bridge, house...  Boulder
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Flash flood hazard?

Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 2: Regular rainstorm - extreme flash flood
e.g. exaggerated flooding impacts

3) Sediment

transport and T—— « ‘
river aggradation July 21,72012; wa

Deposited
sediment



Flash flood hazard?

Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 3: Regular rainstorm - regular flash flood
e.g. lack of effective warning, preparedness, or awareness
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Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

Weather: Typhoon, Monsoon, Cyclone, Rainstorm...
Underlying surface: Topography, geology, vegetation...

Human activities: Urbanization, deforestation ...

, 11/107



: %
YEES: Impacting factors?

Tsinghua University

Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

Y« Natural factors

v"Heavy rain
v’ Steep terrain
v’ Sufficient loose material

v Drift wood, boulders, and other
floats

¥« Human factors

v"Road/buildings occupying flood
plain or passage

v’ Limited-size bridge or culvert
v'Building in streams

v Destroyed bed structures
v"Man-made slagheap/sandpile...
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Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

% Natural factors Weathered rock-soil, landslides, debris flows

v'Heavy rain
v’ Steep terrain
v’ Sufficient loose material

v Drift wood, boulders, and other
floats

¥« Human factors

v"Road/buildings occupying flood
plain or passage

v’ Limited-size bridge or culvert
v'Building in streams

v Destroyed bed structures
v"Man-made slagheap/sandpile...
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Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

ol ‘n,){

Y« Natural factors
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v Drift wood, boulders, and other
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v"Man-made slagheap/sandpile...



: %
%1% Impacting factors?

v/ Tsinghua University

Flash flood disasters:

People & animals are hurt/killed, and assets/infrastructure are
damaged/destroyed through (1) flushing away and/or (2) inundation.

Y« Natural factors

v'Heavy rain
v’ Steep terrain
v’ Sufficient loose material

v Drift wood, boulders, and other
floats

¥« Human factors

v"Road/buildings occupying
flood plain or passage

v’ Limited-size bridge or culvert
v'Building in streams

v Destroyed bed structures
v"Man-made slagheap/sandpile...
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How to model?

Tsinghua University

Flash flood: Forms from hillslope to stream within a
watershed

Hydrological process: rain-runoff modeling

Hydrodynamic process: flood routing

7 A

Sediment transport process:
aggradation/degradation

Wood dynamics: congestion effects
Debris flow dynamics: ...

Accurate models: reasonably take into
account various processes and / '\
mechanisms

?';1’
-
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How to model?

Flash flood: Forms from hillslope to stream within a
watershed

Hydrological simulation:
fast calculation

fast data access and save
Flood routing:

robust numerical algorithm

Efficient models: fast, robust simulation
with acceptable accuracy
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Digital Watershed Model
A GIS-supported, physically-based, distributed modeling system

Developed by

Tsinghua University

for coupled
hydrological-
hydraulic simulation

in large-scale river 0 ' e %
baSinS' Database center : _ o — :am e
. a T&I ";&(ﬁ%% ,,,,,,,,, -
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References:
Wang GQ, Fu XD, Shi HY, Li TJ, 2015. Watershed Sediment Dynamics and Modeling: AWaterlshe -Mo‘d!:lingl i 4 4T3
System for Yellow River. Advances in Water Resources Engineering. Springer International Publi ﬂ@i}:’ b 23/ 11“,_'
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Digital Watershed Model
A GIS-supported, physically-based, distributed modeling system

Digital Terrain Data Water-Soil Conservation

Data Layer .
! Scheduling
Remote Sensing Data :
8 GIS Based Data 1| Water and Sediment
. P i Reduction Analysi
Precipitation Data rocessing eduction Analysis

Disaster Prewarning

Underlying Data

Thematic Database for the Digital Watershed Model

Hillslope-channe}--------- e I ] ] S l """"""
as the basic u I""I:_"_"__t__#_"_"_"__l_"I_;_:;_:;r::::"r_j___ﬁ G
1 1 — 1 | .. :
' = ! ForHillslopes: 1 ! ForChannels: | ' § 1 ] | DaaMiningand |
: >>: I : I : § i B Analysis !
: 3 | |Water Yield Model = | Affluxion Model[ 1 | 5 ' 1| ! !
: 1 | = 1 1 : |
'T.)I R . |<-—| . . I (= | : . :
=N Sediment Yield ;! Gravity Erosion | 1€ : ! GIS & VR Based :
i § 1 Model L Model p ! § (I i Data Visualization |
Al P! p s :
: P ... I M) ... | 1 > 1 : : . :
o ;| I =y i} i PostProcessing

|
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Hillslope-channel as the basic unit

Zone I ‘ Zone 1T | Zone I11 Zone 5 Simulation
phenomena model

Sputter

. Sheetwash
region

region

Ty & shalow Zone I: Hillslope
Sputter, sheet and sediment
Permtnapt .ll . .
aully region rill erosion yleld

v

Generalized
hillslope-channel

!

Water yield and sod erosion

Zone II:
Collapse and
landslides

Gravitational
erosion

Channels

Generalized
Processes

ety oro Zone III: Non-
Hyperconcentrated equilibrium

| flow routing
Hyperconcentratio

Howr
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Hillslope-channel as the basic unit

[ @ Vegetation interception: S,
© Evapotranspiration: E_,,, E
Hydrological processes | { # Surface infiltration: g,

© Soil water redistribution:
| ® Water discharge: Qg , Qyq

u

A
Ecan i
| — ‘
So[ = S A P HHZE
_._____4_._._._____4_._;____E_:_q._.__::__.__.__Q_s__; ______
Topsoil layerT = |
W s _qu_> ?ﬂ
o w. | v
I B _._____4_._f____f4'§"._q.zii_ff__._._f_ o
Subsoil layer T -
Wi e
—— 3
Teim | [ = Wa | W ¥
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Hillslope-channel as the basic unit

. 2 3 3
Detached Soil T T 5,510
e WV, = .aqgen

i i '27/13«&]_



Digital Watershed Model

Hillslope-channel as the basic unit

R R

 Gravitational erosion 2 N
is formulated as

stochastic soil body \
destabilization v

d The confluence of Immlasing soking
rainfall and runoff is N
considered

N Hydro-
compaction Lateral

erosion

.&afi I 28/107




Digital Watershed Model

Hillslope-channel as the basic unit

d Diffusive wave equation is used
 Cross-section of channel is assumed to be V-shape

 The integrated format of non-equilibrium suspended
sediment transport equation is used:

—aql —aql
S=S5.+(S, =Sy )e +(50*—s*)aZ)SL(1—e ” j

 Sediment transport capacity
v« Zhang proposed formula (Ni J. R. et al., 2004), or
v< Fei (2004) derived formula especially for channels

(¥ 29/107



Digital Watershed Model

From basic unit to the whole basin: a hierarchy of river segments
(structured river network)

o

Yellow River e

== - e 2 e = Ry = '/
AR e e e = —
. i = P

The severe erosion region —— - — .
g _; " = - L N »:f”. 3 -'\ - Py /

/

i e p = )
- 3 ] < . z ¥ . - 3 ~
- t ' e 2 ”
i o N =3

T - e Y — - =

s S - ~ - — z =
- e 4
o ; -

—— 30107



Digital Watershed Model

A hierarchy of river segments: Drainage network coding
method based on binary tree theory.

Component L Component V

O The topological
relationship could
be expressed by
river codes

O River segments
could be retrieved
effectively

Assuming the dentritic drainage network as a binary tree:
The first number (Length) represents the logical distance to the outlet
The second number (Value) represents the logical distance to the main stream

, 31/107
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Digital Watershed Model

Parallel computing based on the river code

v« Dynamic parallel computing
technology

Y< Parallel computing based on
decomposition for different
subbasins at a same time

¥ Improving the simulation efficiency

Computing processes

_______________________
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Multipledispatchi I I | | I I i
' 1 2 3 |
i 4 ) 5 37 6 l
7L LT s 9 ] !
] 10 d 12 [k |
MIEE L 1 |: 15 || |
| 16 || :
| |

— e = = = —

J Upstream-downstream dependency in flow routing
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T
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!
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network decomposition
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completion message \

Yy
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Chabagou basin

» It lies in Zizhou County, Shaanxi
Province.

»» The total area is 205 km?Z.

% A lot of observation stations gy
have been setup since 1959, : g%m%ﬁ%@“
which makes the observation G
data accessible.

8H1H
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Digital Watershed Model
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Chabagou basin e

i1 _
WHRME
')

Components of erosion modulus ... |
%

[ 3.000 - 6,000 -
Slope erosion i &
. . . [ ] 12,000-15,000 !
Gravitational erosion [ 15,000 - 18,000
[ 18,000 - 21,000
. . . I 21,000 - 24,000
Stream erosion/sedimentation B 2+.000 - 27,000
B 27000 - 30,000
B -:30.000

B
I 51 a3 5
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Digital Watershed Model
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Recent Advances (RA)

RA1: Hydrological simulation:

® Rainfall data input: Spatial inhomogeneity
& Parameter calibration: sensitivity
RA2: Hydrodynamic simulation:
© Governing equations and numerical schemes
¥ Sediment transport and morphological models

¢ Flow resistance
RA3: Information techniques

¥ Parallel computing techniques

(s 36/107



Recent Advances

Rainfall data Input: spatial inhomogeneity

v¢ Rainfall center: Total rainfall depth is generally 2-5 times greater than
those at the other stations.

Y¢ Rainfall center: typically involves only 1-2 stations (within 100 km?) in
the Loess Plateau

Y<Problem: optimal density of rain gauges?

N

Ao,

2001 Rainfall Group
b 1a
B
B
B 1d

1e
1f
1h |

3
|

6 12 Kilometers
|
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Rainfall using partial stations/Rainfall using 11 stations

Impacts of rain gauge density

¥« Box plots of average basin rainfall and simulated runoff with different
combination of rainfall gauge stations.
v« The NSE value presents worse results as the gauge number decreases

2001.8.16
E 3.007
s A box plot is a description of the
T 5504 data distribution, which denotes the
g o 5 percentiles of the performance of
E 2.00- ‘ I quantitative variables, i.e., P2.5,
H { I ‘ | P25, P50, P75, and P97.5.
% 1507
" |
E 1004 =— ﬁ i? 1— T f“ ( K The P25 — P75 range constitutes a
5 - -1 box of the graphics, and the P2.5 —
£ 0230, 8 e [ ‘ ° P25 and P75 — P97.5 ranges
% constitute the two whiskers.
c 0.007 ]

Number of stations -
Using SPSS (Statistical Product and Service Solutions.) Tt A 38/107 _
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Impacts of rain gauge density

e With the reduction of rainfall input, the NSE becomes worse.

v<The NSE value is satisfactory and could reach 0.8 if the D, is more
than 21 in this 930 km? area

=>» A rain gauge should cover no more than 45 km? in the

loess plateau

2001.8.16
1.00 1
0.8
0507 =~ 4 i . 06
) 0.4
0.00] 02 ¢+
11T]
o 0 o
= =
40.50 l -02 |
[a] e _04 [~
., g 8 g 1 1
-1.00 o -06
-0.8
0
1501

T T T T T T T T T T T
1 10 9 8 7 6 &5 4 3 2 A1
Number of stations




Recent Advances (RA)

RA1: Hydrological simulation:

¥ Rainfall data input: Spatial inhomogeneity
@ Parameter calibration
RA2: Hydrodynamic simulation:
© Governing equations and numerical schemes
¥ Sediment transport and morphological models

¢ Flow resistance
RA3: Information techniques

¥ Parallel computing techniques

s U 401107



Recent Advances

Model parameter calibration

v« Computing time remains an obstacle when a large-scale
region model is calibrated using optimization techniques.

Y¢The major challenge is to break the limitation of the
Inevitable serial calculation along the main stem

Y«Problem: How to save time?
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Recent Advances

Double-layer parallelization technique for calibration

¥¢ A parallelized model as the lower-layer is managed.
Y¢ Simulations with different parameters as the upper-layer run in parallel
on an HPC.

¥« Significantly improves the efficiency of model calibration.

The various parameters I
| T | HPC job list
3 combinations I
- | The upper-layer ¥ |
| parallelism
Multiol : : § Job 01 running
| ultiple computation scenarios Job 02 running
Job 03 running
T 777777777777777777777777777777777777777 Job 04 Waiting
Thel : . Job 05 waiting
¢ lower-layer . Job 06 waitin
parallelism The parallel hydrological model |  * &

References:
Lietal., 2011. Dynamic parallelization of hydrological model simulations. Environmental Modelling & Software. 26, 1736-1746
Zhang, et al., 2015.Double-layer parallelization for hydrological model calibration on HPC sys't'ins‘. Journal of Hydrology. Und42l\19v7 I
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Recent Advances

timization

Parameter

108

- 0.

I

Multidimensional
parameter
optimization

6

K,z (102 m/r)
A o K (10° nvhe)
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Recent Advances

 GLUE (Generalized Likelihood Uncertainty Estimation)

1 :
1 1
. i IA“ :‘ .u*‘&‘h I
05 F o 0% o8 i‘.":. ‘5 *onys
LN RS O Tolerance
0 L NES .‘q::-.ija.t.. » e _
‘e ° . M Al .®
R TSt SR FEU AT interval for K,
% 05 L N ® A“‘ r‘ﬁ ..-.. °® fnr; ¥‘trfa:§‘ “ia .
Z S A L I i Is small, that
-1 r : N ‘.;: 1 1 .
s : : * Year 2001 event means KZUS IS
15 © 1 1 .y
t : : + Year 2002 event SenS|t|Ve
|_2 | I | | I | | -
0 0.002 0.004 0.006 0.008 0.01 0.012 |
K., (m/hr)
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Recent Advances

1
0.5
0

-0.5
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-2

-2.5
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AL LR
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0 0.02 0.04 0.06 0.08 0.1 0.12
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Recent Advances

RA1: Hydrological simulation:

¥ Rainfall data input: Spatial inhomogeneity
¥ Parameter calibration
RA2: Hydrodynamic simulation:
® Governing equations and its numerical schemes
¥ Sediment transport and morphological models

¢ Flow resistance
RA3: Information techniques

¥ Parallel computing techniques

e 46/107



Recent Advances (RA)

Governing equation: 1D Saint Venant equations

Mass: oA R _, = L
e T E
aQ o Q3 o7
Momentum: —gA—=-05S >
omentu ot ax(A) J OX 1 Slow

*Suitable for arbitrary cross sections, but might lead to numerical
instabilities when there is topography discontinuity

07 ,0Q/B) _ g 0B o .
ot OX OX LT N= /
Q.0 02 \ J
—0A==—q@S -
() =—0A— S, N

* The water surface is smooth even when there 1s topography
discontinuity; the equation has the conservative form

o I 471107
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LTS (large time step) scheme for fast calculation

Flash flood calculation: instability; small value of CFL number

wave propagation method

o
7

o/ Xuetal (2014)
- ” 1 1 4 ; | f.-:
Scheme CFL Number Physical Time (S) CPU Time (S) Efficiency (Roe=1)

Roe 0.8 200.8466 9.59827E-3 1

LTS 1.0 201.1399 7.29919E-3 1.32
LTS 2.0 201.1137 4.68578E-3 2.04
LTS 3.0 201.4131 3.60982E-3 2.63
LTS 4.0 204.9585 3.08502E-3 3.13
LTS 2.5 204.4628 2.61879E-3 3.70

LTS 15 213.9276 2.51696E-3 385
% W i 43108



Recent Advances

RA1: Hydrological simulation:

¥ Rainfall data input: Spatial inhomogeneity
¥ Parameter calibration
RA2: Hydrodynamic simulation:
© Governing equations and numerical schemes
€ Sediment transport and morphological models

¢ Flow resistance
RA3: Information techniques

¥ Parallel computing techniques

e 49107
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Sediment transport and morphological models

* Uniform sediments: Corrected Meyer-Peter and Muller equatlon

(Wong and Parker 2005)
* «\1.5 * *

= ab(r —Z'C) for - > 1,
0 forr <z

c

* Non-uniform sediments: Wilcock and Crowe equation
(Wilcock and Crowe 2003)

0.002¢"

W =] .5 forg<1.35
! 14(1_% forg >1.35
_ «_ Roqy

p=1,/7, W, = Tu?

Recent Advances

Dimensionless bed-load discharge

C.00

D Ma Yatir

W rMahal Eshtemoca

" Powell et
5(1999)
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Sediment transport and morphological models
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oz 0Q/b) . 0b Active layer model (Liu et al., 2012)
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Bank erosion: Gravitational collapse model (Osman and
Thorne, 1988)

Erosion under the coupled action of flow and gravity

[ A A A A A '.' !
Soil block of . ‘
T 2
. the initial Iallurcé?:,
'ﬂ:l‘::‘le.
_ N :
= N =
. Lo
> \ Gﬁ':._\\
'i -
t" | g
e # eoedy”
- I h, =
= e
+ AR ™ (a) *

Flow shear stress: T, = y,,n?u?h~1/3

Critical shear stress: T, = 0.047 (Vpr — Y )ds0
Cl (Tf — T.

) e(=137c) A¢
MR 521107

Bank retreat during At: 4B =

Vbk
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Recent Advances

Bank erosion: Morphodynamic model (Cantelli et al., 2007)

Erosion caused by bedload transport at bed and banks

Az
yt

P Buv Yw -
f S% '.'.httl_ level
1 Mw
1t 1 TH
Bss b By Vb 0
o : b=
Es
= % T
X y =

dn, 10(qsxH) 0B,
9t 75 ax T ox 4w

dBy, Nt — Mp
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Recent Advances

RA1: Hydrological simulation:

¥ Rainfall data input: Spatial inhomogeneity
¥ Parameter calibration
RA2: Hydrodynamic simulation:
© Governing equations and numerical schemes
¥ Sediment transport and morphological models

@ Flow resistance
RA3: Information techniques

¥ Parallel computing techniques:
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Flow resistance: Manning coefficient n U = LR23g1»
n
0.5 1/6
0.4 *;:;ciliiuer + Longxi River n — ks ?
A T FE[14] a3k

05 RER[14] A
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n ¢ ‘ + Longxi River n
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Recent Advances

Proposed formula for mountain streams:

1/n= 0-66QO'14g0'43 /(d900'52J 0.26)

0.5 0.5

L/
L 4
0.4 0.4 -
\ 4
0.3 | * * . 03 *
- = 744
e
Wo2 - ¢ M o2 | *
*¢
* g
01 - 01 f o
2 mpEaam » « SR BRIEEE
0 0 ! | ' .
0 0.1 0.2 0.3 0.4 0.5 0 i 02 03 04 05
nit& nit&

.'_

Applicable to mountain streams similar to the Longxi River
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Recent Advances

A potentially unified formula of form resistance:
Validated against a large set of field data with slope ranging from 0.004%

to 28.7% covering both alluvial and mountain rivers.
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Recent Advances

RA1: Hydrological simulation:

¥ Rainfall data input: Spatial inhomogeneity
¥ Parameter calibration
RA2: Hydrodynamic simulation:
© Governing equations and numerical schemes
¥ Sediment transport and morphological models

¢ Flow resistance
RA3: Information techniques

@ Parallel computing techniques
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Recent Advances

Universal drainage network coding method based on binary tree theory:
from (Layer Number, Node Number) to (Layer Number, Node Number, Pnode

Number)
(Layer Number, Node Number, Pnode Number)

@

(0,0, -1)
(1’0’0) (1,1,0)
O O O O O
(2,0,0) A2/1)0) (2,2,1) (2,8,1) (2,4, 1)
O O O O () 3,4,3)

(3,0,1) (3,1,1) (3,2,1) (3,3,1)

(4,0,4)(4,1,4)(4,2,4)(4,3,4)(4,4,4)(4, 5, 4)
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Minimum CPU number for maximum speed-up ratio and
its parallel computing algorithm

4.00
T —— Q...................,,,,..--““........... 1—17 — 3.4
350 4 3.40 3.40 3.40
o : o o )
4 e b ---------------------- 216 — 4 %’ 200 | :
/ \ = ° i
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s : - parallel degree
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Optimum parallel degree
Speed-up ratio = time for . CW ()
serial calculation / time for OP =max{ne N [n = Ceil(
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Recent Advances

Parallel computing algorithm:
discretization in both space and time

N .
min{y = - U< )<L}, 1<x<0P
R (x)= max{L, CeiI(AWIX:(J)— j+L)}
ﬂ, x>0P
L
T, XN
OP:max{x:Cell(m)1<J<L} R (X)_(T) o

{ A
3 |

:0..-01’_'.'.'."..--" —
Wang et al. (2011, 2012, 20; g : i
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Outline

1. Overview of flash flood hazards
2. Modeling of flash flood

3. Exaggerated flood hazard

4. Toward future: ongoing efforts
5. Summary
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Extreme hazard

Extreme flash flood disaster:

August 8, 2010: Zhouqu County in Gansu Province
3887 people were Kkilled.




Extreme hazard

Extreme flash flood disaster:

August 13, 2010: Sichuan Province

¢®\Wenchuan: 72 people killed or lost
¢ Qingping: 12 people killed or lost




Extreme hazard

Caused by extreme flood or other reasons?

extreme flood?

other reasons?

Question 1: features of extreme flood?
Any differences from regular flash flood?
Defined as the flood with a 50-year water stage?

Question 2: formation mechanism?

AR LS i souignl



Extreme hazard

Tromp-van Meerveld & McDonnell (2006, WRR, W02410):
Panola Mountain Research Watershed (Georgia, USA)
hillslope (50m long, 20m wide, 13°)

Observation: rainfall threshold and abrupt increase in runoff

1000 ; c
A @ Soil moisture at start of storm at 0.70 m > 40%
O Soil moisture at start of storm at 0.70 m < 40%
100 E B L * %, ©
= ® o
= e o © o ® o 5 1
= 10 Y =
T o}
= ) 2
o a
I 1 § 01+ o
lg -
O @ o
0.1 o® © o 0.01 + . : , , . : . :
w& Q 0 20 40 60 80 100 120 140 160 180
0.01 . — Ol . ‘ : : : Total precipitation (mm)
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EZS Overview of Longxi River

Tsinghua University

» Close to the epicenter of the 2008 Wenchuan Earthquake
» Subsequent landslides and debris flows

Subsequent
landslides
and debris
flows

o, i i ey
Channel slope >10% PRAN S 2 8
'S

o




%42

Tsinghua University

Overview of Longxi River

» River deposition: average aggradation of 7~8 m

Mass wasting following the 2008 Wenchuan earthquake Debris flow

GOOSIC earth

mY e 69/107



EZS Overview of Longxi River

Tsinghua University

Heavy rainfall on Aug 13-14, 2010: Flooding

Yinxiu City (Bit5%):

» Epicenter of the 2008 |
Wenchuan earthquake e e e e s~

» Near to Dujiangyan

Intense flood swz_lllowed_; #
the buildings 4 i
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Overview of Longxi River

Heavy rainfall on Aug 13-14, 2010: Flooding

Longxi River:
» Close to Yinxiu City

» Near to Dujiangyan o

i —

iments filled thﬁ .

he old channel disappeared

T ; :
N i

e
J' l:l.
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Case study of Longxi River




Case of Longxi River

1)Jiapinggou: rainfall,
water stage, soll
moisture profile

Area: 3 km?
Channel slope: >20%

2)Longxi1 River: rainfall, water stage

Drainage area: 79 km?
Channel slope >10%

:.f:_—_‘-, + 5 73/1 07 |



Case of Longxi River

Monitoring system: rainfall, flow, and soil moisture
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Case of Longxi River

Captured spatial inhomogeneity of rainfall
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Case of Longxi River
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Silty clay

Silt loam

clay

Case of Longxi River
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Case of Longxi River

| T
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Case of Longxi River

Analysis of flood properties
InHM (Ran et al., 2013) provides hydrological boundaries under

designed rainstorms 8 T -T. —— TR
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Case of Longxi River

Initial soil moisture significantly affects the peak discharge
(Jianpinggou, 6h rainstorm )

Soil percent saturation = 80% vs. percent saturation = 20%

10 JN |
/\c7> ﬁ Initial saturation
™ 0
() - .

o / Initial saturation

® degree 40%

5 o Exponential N

D

S curve N .

w Initial saturation

© o001 Threshold ] degree 20%

S behavior?”

100 150 200 250 300 350

6h total rainfall-Cmm) =
r.
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%+ ¥ Case of Longxi River
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Peak discharge-total rainfall curve Threshold behavior
Water level rising time-total rainfall curve at 50-year storm?

Initial soil percent saturati%l =81%
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200-year N
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Two peaks: hydrological response vs. flow convergence

Separate or merged peaks
Heavier rainfall > faster flow convergence - merged peaks

(around the 50-year rainfall) — explaining the threshold

T 1ED5
£
g SE-06
[ : g
a0 ____. 200 A I 20000 0000 B0 80000
- 100 b ]
T 80 Do 035¢ «—50-year rainfall
| 10 LA [ s 50)
?;"300 i Co N o] 20 '
— ! AR - 10
e AN 0.25F
Lo i I} A [
g200r ! N 2 o2f
{ i A £ [
Y AANN o 0.15F .
100E LN +«20-year rainfall
| K ; Y 0.1 Fad
! ;I E e
0 N Y R . T o % et - eak Caused by
0 20000 40000 60000 80000 0 L
Time (s) 0 20000 40000 60000 80000 flow [conve rgence
Time (s)
Nov 2011, Observed 1nitial saturation degree 57%
s 4 83/107



Case of Longxi River

Analysis of flood properties altered by sediment

. . =N Longitudinal profil
» Computational domain: - - ST
% Zhucao Valley to Nanyue - a
Village, 4.4km Pl
> Cross section: - e
v« Trapezoidal N
v« Bed width: 12.0 m at inlet;
25.2 m at outlet. ’ 7~
» Sediment size: :° //
(pebble count method ) /
IR,
dgy: 0.1~0.5m; d,: 0.05~0.2m o/

13,5 84/107



Case of Longxi River

Analysis of flood properties altered by sediment

» Proposed resistance formula (Zhang et al, 2012):

1/n= 0.66Q0'14g0'43 /(dgoo'SzJ 0.26)

» Additional resistance from bedload transport (Wang &
Chien, 1985; Dietrich and Whiting, 1990; Matousek, 2013)

~1.2d, (1-cosg)(z,/7,)

K., =2.310, +k, &,
1+0.2(7, /7,)
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Case of Longxi River
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Analysis of flood properties altered by sediment

Scenarios of designed rainstorms:

Rainfall Peak discharge
50-year 150 m?/s
100-year 260 m?/s
200-year 410 m?/s

v Before earthquake: fixed bed in computation

v" After earthquake: movable bed covered with freely-erodible
sediment

s U 86/107



Case of Longxi River

Analysis of flood properties altered by sediment

» Aug 18, 2012: a flood with peak discharge of 130 m?/s at the
inlet

» Field survey: flood stage at the steel bridge (3.8 km from the
inlet) is 1.6 m.

» Simulation: flood stage at the same site IS 1.80 m
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Analysis of flood properties altered by sediment

Scenario: 50-year storm

16
Site: 2.8km from the inlet

12 ™
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Case of Longxi River

Analysis of flood properties altered by sediment

Before and after the earthquake (Scenario: 50-year rainfall)

5

> Sediment
deposit
dominates

»Flood stage
increment is
larger in the < !-
upper reach

ak flood depth {(m)

-
1

[
1

{'_

1200

m fixed bed stage mbed aggradation ™ extra resistance
h = hO + hdep + hbedload

Water stage increment is 25%~150%
mostly contributed by aggradation

1800

2400 3000 3600
Distance from inlet {m)
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Analysis of flood properties altered by sediment

after before

’ Landslide & 36 5()
—8— After earthquakes debris flow year year
) O Before earthquakes (1
. Loose solid g 60 P 100
E material year year
B &
g —0 98 P 4 200
= Blocking of year year
z the channel
= D
'-é 1.5 =
£ Flood stage increase
due to deposit =&
Lo e e Decrease of flood
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Outline

1. Overview of flash flood hazards
2. Modeling of flash flood

3. Exaggerated flood hazard

4. Toward future: ongoing efforts

5. Summary
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Ongoing efforts

Toward flood modeling and forecast in future

Y«From small watershed to large river basins

Y«From experts to common inhabitants

Facts:
Model for large-scale region
ata for large-scale region v¢ Distributed models
Y«NWP data for forecast Y& HPC for hardware base

v<Radar data for imminent forecast

v<Satellite data for history simulation Use for community

v¢ Web service for the public

13,5 92/107
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Data from numerical weather prediction (NWP)

The TIGGE data

» THORPEX:
The Observing System Research and Predictability Experiment

> TIGGE:
THORPEX Interactive Grand Global Ensemble

» Participating agencies
e.g., CMA, CMC, CPTEC, ECMWF, NCEP, and UKMO

The same temporal resolution (i.e., 6 hours)
Different spatial resolutions (e.g., 9/16° for the CMA and 1° for the NCEP)

The forecast lead time: 1-16 days

The GFS data......

1 l-l;'-_l-‘ _T_: y ¥ 93/1 07 |



Ongoing efforts

Satellite-derived rainfall datasets

The CMORPH

> NOAA
» Morphing Technique
» Participating agencies
National Oceanic and Atmospheric Administration, Climate
Prediction Center, e.g., SSM/l, AMSU-B, AMSR-E, TMI

Temporal resolution : 30 min

Spatial resolutions: 8 km

The downloadable time: about 4 hr after event
Satellite coverage: 60 ° N ~60"° S

Starting time: 2003

The TRMM ......

s U 94/107
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Global Drainage Network: Hydro30
ngh resolutlon rlver reaches W|th detalled mformatlon
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Web service would be highly valuable for users to enhance
the awareness of flood risk.

Web_GUI
River Network | Precipitation Scheme Runoff
Browse Query Management Prediction

Web Service

Scheme_Submit | Process_Query | Scheme_Download Result_Get
H —

Model - L

TUD-Basin HydroMP
(hydrological simulation) (Criver routing simulation) E
' -

DataBase | {%%]

Global Model Global Global HPC Cluster

Network Parameter Precipitation Runoff S |

NI0OMIaN [ENMIA

Windows Azure 00T

Interaction | 3
_ | . DataCenter 96/10
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Submit the simulation case online

Case simulation based on the NWP data

&1 1) Global Flash Flood Predict x ST R A ST T M
http://42.159.24.58:8010/GloF3S V2.0/English/main.html

Global Flash Flood Prediction

Ongoing efforts

Meteorological Simulation e @ Q @ﬁ‘ Q ¥
Hydrology Modelling A\ PR LR {4 ST

f
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\ S
3
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. | /
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Exit
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& [ Global Flash Flood Predicti X | [ web service support - Goc X

http://42.159.24.58:8010/GloF3S V2.0/English/main.html Q EH A~

‘Global Flash Flood Prediction |

Sy MOTL2 1 1> 1V ] .
Meteorological Simulati o - - 9 W -’ | = - l o
Hydro'm Hodeihng : ) : . 5 '\L':-‘__ - ? :
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Ongoing efforts

Flood forecast framework based on hist lation data
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Ongoing efforts

Requirement of data resolution: Case in Southern China
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data resolution: Case in Northern China
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Ongoing efforts

Merged data from rainfall gauges and satelllte (CMORPH)

40°0'N ? —— b. . ? Zh - .Dt : R R N
Study area and area s ‘ """" 5 @
. ° E P 2022 | - . s
Dashihe River -, s o
» 11 rainfall stations S e« =
» 1 hydrological station - &
» 1 hour resolution merging process jpama
N #
W@ B 0300UTC 0400 TTC 0500 UTC
Rainfall (mm) ‘ il
me ’ = - |

4 F 4

14:00TTC 1500 UTC 16:00 UTC

. r rl a
B i
17.00 UTC '!102



%42

Tsinghua University

Ongoing efforts

Merged data from rainfall gauges and satellite (CMORPH)

The simulation results based on the merged data show the best
performance: with two runoff peaks found in the observation
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Summary

1. Overview of flash flood hazards
2. Modeling of flash flood

3. Exaggerated flood hazard

4. Toward future: ongoing efforts
5. Summary
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Summary

d Flash flood hazard is affected by both the weather and
underlying surface conditions. Its formation and
developing into a disaster is very complicated.

 The Digital Watershed Model is a couple hydrological-
hydraulic modeling system that can simulate the runoff
and solil erosion for large drainage basins. It is featured
through its physically-based processes and information
techniques.

 Extreme flash flood differ from a regular flash flood
through its peak discharge (the stage rising time) —
total rainfall relationship. Both hydrological response
and flow convergence contribute to its formation.
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Summary

1 Sediment transport and aggradation may significantly
change the properties of flash flood. It can result in
extreme flash flood hazard, in particular, in earthquake
hit regions.

 Toward flash flood modeling and forecast in future, the
extension from small watershed to large river basins
and from experts to common inhabitants is emerging.
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Questions and Discussions?




