

ESCAPE/WMO Typhoon Committee Roving Seminar, Vientiane, LAO PDR, Nov 4-6, 2015

Topic B: Part 1 Modeling and prediction of flash flood altered by sediment transport in mountain streams

Xudong Fu

State Key Laboratory of Hydroscience and Engineering Tsinghua University, Beijing, China Email: xdfu@tsinghua.edu.cn

Nov 4, 2015

- 1. Overview of flash flood hazards
- 2. Modeling of flash flood
- 3. Exaggerated flood hazard
- 4. Toward future: ongoing efforts
- 5. Summary

What is flash flood?

Flash flood:

- Short duration & high magnitude
- Sudden & destructive
- Common in mountain streams
- Rainstorm, landslide dam failure, glacial lake outburst, etc.

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

Serious all over the world!

June 10, 2005: a primary school, Shalan Town, Heilongjiang Province. 105 students were killed.

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 1: Extreme rainstorm \rightarrow extreme flash flood e.g. Increasing extreme weather events due to climate change

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 2: Regular rainstorm \rightarrow extreme flash flood

e.g. exaggerated flooding impacts

1) Impounded water releases suddenly

Barrier lakes or glacier lakes outburst.

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 2: Regular rainstorm \rightarrow extreme flash flood

e.g. exaggerated flooding impacts

2) Flood flow is choked, resulting in water level rising

Boulders, drifting wood, bridge, house...

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 2: Regular rainstorm \rightarrow extreme flash flood e.g. exaggerated flooding impacts

2) Flood flow is choked, resulting in water level rising

Boulders, drifting wood, bridge, house...

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 2: Regular rainstorm \rightarrow extreme flash flood e.g. exaggerated flooding impacts

3) Sediment transport and river aggradation

Deposited sediment

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

Pattern 3: Regular rainstorm \rightarrow regular flash flood e.g. lack of effective warning, preparedness, or awareness

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

Weather: Typhoon, Monsoon, Cyclone, Rainstorm... Underlying surface: Topography, geology, vegetation... Human activities: Urbanization, deforestation ...

Tsinghua University

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

☆ Natural factors

- ✓ Heavy rain
- ✓ Steep terrain
- ✓ Sufficient loose material
- Drift wood, boulders, and other floats

☆ Human factors

- Road/buildings occupying flood plain or passage
- ✓ Limited-size bridge or culvert
- ✓ Building in streams
- ✓ Destroyed bed structures
- ✓ Man-made slagheap/sandpile...

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

☆ Natural factors

- ✓ Heavy rain
- ✓ Steep terrain
- ✓ Sufficient loose material
- Drift wood, boulders, and other floats

🛠 Human factors

- Road/buildings occupying flood plain or passage
- ✓ Limited-size bridge or culvert
- ✓ Building in streams
- ✓ Destroyed bed structures
- ✓ Man-made slagheap/sandpile...

Weathered rock-soil, landslides, debris flows

Tsinghua University

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

☆ Natural factors

- ✓ Heavy rain
- ✓ Steep terrain
- ✓ Sufficient loose material
- Drift wood, boulders, and other floats

☆ Human factors

- Road/buildings occupying flood plain or passage
- ✓ Limited-size bridge or culvert
- ✓ Building in streams
- ✓ Destroyed bed structures
- ✓ Man-made slagheap/sandpile...

Tsinghua University

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

☆ Natural factors

- ✓ Heavy rain
- ✓ Steep terrain
- ✓ Sufficient loose material
- Drift wood, boulders, and other floats

☆ Human factors

Road/buildings occupying flood plain or passage

- ✓ Limited-size bridge or culvert
- ✓ Building in streams
- ✓ Destroyed bed structures
- ✓ Man-made slagheap/sandpile...

Tsinghua University

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

☆ Natural factors

- ✓ Heavy rain
- ✓ Steep terrain
- ✓ Sufficient loose material
- Drift wood, boulders, and other floats

☆ Human factors

- Road/buildings occupying flood plain or passage
- Limited-size bridge or culvert
- ✓ Building in streams
- ✓ Destroyed bed structures
- ✓ Man-made slagheap/sandpile...

Tsinghua University

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

☆ Natural factors

- ✓ Heavy rain
- ✓ Steep terrain
- ✓ Sufficient loose material
- Drift wood, boulders, and other floats

☆ Human factors

- Road/buildings occupying flood plain or passage
- ✓ Limited-size bridge or culvert
- ✓ Building in streams
- ✓ Destroyed bed structures
- ✓ Man-made slagheap/sandpile ...

Tsinghua University

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

☆ Natural factors

- ✓ Heavy rain
- ✓ Steep terrain
- ✓ Sufficient loose material
- Drift wood, boulders, and other floats

☆ Human factors

- Road/buildings occupying flood plain or passage
- ✓ Limited-size bridge or culvert
- ✓ Building in streams

Destroyed bed structures

✓ Man-made slagheap/sandpile...

Tsinghua University

People & animals are hurt/killed, and assets/infrastructure are damaged/destroyed through (1) flushing away and/or (2) inundation.

☆ Natural factors

- ✓ Heavy rain
- ✓ Steep terrain
- ✓ Sufficient loose material
- Drift wood, boulders, and other floats

☆ Human factors

- Road/buildings occupying flood plain or passage
- ✓ Limited-size bridge or culvert
- ✓ Building in streams
- ✓ Destroyed bed structures
- ✓ Man-made slagheap/sandpile...

- 1. Overview of flash flood hazards
- 2. Modeling of flash flood
- 3. Exaggerated flood hazard
- 4. Toward future: ongoing efforts
- 5. Summary

Flash flood: Forms from hillslope to stream within a watershed

Hydrological process: rain-runoff modeling

Hydrodynamic process: flood routing

Sediment transport process: aggradation/degradation

Wood dynamics: congestion effects

Debris flow dynamics: ...

Accurate models: reasonably take into account various processes and mechanisms

How to model?

Flash flood: Forms from hillslope to stream within a watershed

Hydrological simulation: fast calculation fast data access and save Flood routing: robust numerical algorithm

Efficient models: fast, robust simulation with acceptable accuracy

A GIS-supported, physically-based, distributed modeling system

Developed by Tsinghua University for coupled hydrologicalhydraulic simulation in large-scale river basins.

Tsinghua University

References:

Wang GQ, Fu XD, Shi HY, Li TJ, 2015. Watershed Sediment Dynamics and Modeling: A Watershed Modeling System for Yellow River. Advances in Water Resources Engineering. Springer International Publishing 1-40.

Digital Watershed Model

A GIS-supported, physically-based, distributed modeling system

- Gravitational erosion is formulated as stochastic soil body destabilization
- The confluence of rainfall and runoff is considered

Hillslope-channel as the basic unit

- Diffusive wave equation is used
- Cross-section of channel is assumed to be V-shape
- □ The integrated format of non-equilibrium suspended sediment transport equation is used:

$$S = S_* + (S_0 - S_{0^*})e^{\frac{-\alpha qL}{\omega_s}} + (S_{0^*} - S_*)\frac{q}{\alpha \omega_s L}\left(1 - e^{\frac{-\alpha qL}{\omega_s}}\right)$$

□ Sediment transport capacity

- ☆ Zhang proposed formula (Ni J. R. et al., 2004), or
- ☆ Fei (2004) derived formula especially for channels

From basic unit to the whole basin: a hierarchy of river segments (structured river network)

A hierarchy of river segments: Drainage network coding method based on binary tree theory.

- The topological relationship could be expressed by river codes
- River segments could be retrieved effectively

Assuming the dentritic drainage network as a binary tree: The first number (*Length*) represents the logical distance to the outlet The second number (*Value*) represents the logical distance to the main stream

Parallel computing based on the river code

- A Dynamic parallel computing technology
- ☆ Parallel computing based on decomposition for different subbasins at a same time

Multiple dispatch

16

14

☆ Improving the simulation efficiency

Computing processes

10

13

16

5

8

11

14

Chabagou basin

- It lies in Zizhou County, Shaanxi Province.
- ✤ The total area is 205 km².
- A lot of observation stations have been setup since 1959, which makes the observation data accessible.

Chabagou basin

Components of erosion modulus (t/km²)

- Slope erosion
- Gravitational erosion
- Stream erosion/sedimentation

Lasha River basin

0

6/20

6/30

7/10

7/20

7/30

8/9

8/19

8/29

9/8

90

100

35/107

Recent Advances (RA)

RA1: Hydrological simulation:

- Rainfall data input: Spatial inhomogeneity
 Parameter calibration: sensitivity
 RA2: Hydrodynamic simulation:
 - Governing equations and numerical schemes
 - Sediment transport and morphological models
 - Flow resistance

RA3: Information techniques

Parallel computing techniques

Rainfall data Input: spatial inhomogeneity

- Rainfall center: Total rainfall depth is generally 2-5 times greater than those at the other stations.
- ☆ Rainfall center: typically involves only 1-2 stations (within 100 km²) in the Loess Plateau

Problem: optimal density of rain gauges?

Impacts of rain gauge density

Box plots of average basin rainfall and simulated runoff with different combination of rainfall gauge stations.

 \Rightarrow The NSE value presents worse results as the gauge number decreases

A box plot is a description of the data distribution, which denotes the 5 percentiles of the performance of quantitative variables, i.e., P2.5, P25, P50, P75, and P97.5.

The P25 – P75 range constitutes a box of the graphics, and the P2.5 – P25 and P75 – P97.5 ranges constitute the two whiskers.

Impacts of rain gauge density

With the reduction of rainfall input, the NSE becomes worse.
 The NSE value is satisfactory and could reach 0.8 if the D_s is more than 21 in this 930 km² area
 A rain gauge should cover no more than 45 km² in the

→ A rain gauge should cover no more than 45 km² in the loess plateau

Recent Advances (RA)

RA1: Hydrological simulation:

Rainfall data input: Spatial inhomogeneity

Parameter calibration

RA2: Hydrodynamic simulation:

- Governing equations and numerical schemes
- Sediment transport and morphological models
- Flow resistance

RA3: Information techniques

Parallel computing techniques

Model parameter calibration

Computing time remains an obstacle when a large-scale region model is calibrated using optimization techniques.

The major challenge is to break the limitation of the inevitable serial calculation along the main stem

☆Problem: How to save time?

Double-layer parallelization technique for calibration

- \Rightarrow A parallelized model as the lower-layer is managed.
- Simulations with different parameters as the upper-layer run in parallel on an HPC.
- Significantly improves the efficiency of model calibration.

References:

Li et al., 2011. Dynamic parallelization of hydrological model simulations. Environmental Modelling & Software. 26, 1736-1746 Zhang, et al., 2015. Double-layer parallelization for hydrological model calibration on HPC systems. Journal of Hydrology. Under 26, 1736-1746

Parameter sensitivity analysis

K _{zus}	Vertical saturated conductivity of topsoil layer (m/hr)
K _{u-ds}	Vertical saturated conductivity between topsoil and subsoil (m/hr)

Multidimensional parameter optimization

Parameter sensitivity analysis

K _{zus}	Vertical saturated conductivity of topsoil layer (m/hr)
K _{u-ds}	Vertical saturated conductivity between topsoil and subsoil (m/hr)

• GLUE (Generalized Likelihood Uncertainty Estimation)

Tolerance interval for K_{zus} is small, that means K_{zus} is sensitive.

Parameter sensitivity analysis

K _{zus}	Vertical saturated conductivity of topsoil layer (m/hr)
K _{u-ds}	Vertical saturated conductivity between topsoil and subsoil (m/hr)

• GLUE (Generalized Likelihood Uncertainty Estimation)

Tolerance interval for K_{u-ds} is large, that means K_{u-ds} is not sensitive.

RA1: Hydrological simulation:

- Rainfall data input: Spatial inhomogeneity
- Parameter calibration
- **RA2: Hydrodynamic simulation:**
 - Governing equations and its numerical schemes
 - Sediment transport and morphological models
 - Flow resistance
- **RA3: Information techniques**
 - Parallel computing techniques

Recent Advances (RA)

Governing equation: 1D Saint Venant equations

• Suitable for arbitrary cross sections, but might lead to numerical instabilities when there is topography discontinuity

 $\frac{\partial Z}{\partial t} + \frac{\partial (Q/B)}{\partial x} = -Q/B^2 \frac{\partial B}{\partial x}$ $\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} (\frac{Q^2}{A}) = -gA \frac{\partial Z}{\partial x} - gS_f$

• The water surface is smooth even when there is topography discontinuity; the equation has the conservative form

LTS (large time step) scheme for fast calculation

Tsinghua University

Flash flood calculation: instability; small value of CFL number

RA1: Hydrological simulation:

- Rainfall data input: Spatial inhomogeneity
- Parameter calibration

RA2: Hydrodynamic simulation:

- Governing equations and numerical schemes
- Sediment transport and morphological models
- Flow resistance

RA3: Information techniques

Parallel computing techniques

Sediment transport and morphological models

 Uniform sediments: Corrected Meyer-Peter and Muller equation (Wong and Parker 2005)

$$q^{*} = \begin{cases} \alpha_{b} \left(\tau^{*} - \tau_{c}^{*}\right)^{1.5} & \text{for } \tau^{*} > \tau_{c}^{*} \\ 0 & \text{for } \tau^{*} \le \tau_{c}^{*} \end{cases}$$

• Non-uniform sediments: Wilcock and Crowe equation (Wilcock and Crowe 2003)

$$W_i^* = \begin{cases} 0.002\phi^{7.5} & \text{for } \phi < 1.35\\ 14\left(1 - \frac{0.894}{\phi^{0.5}}\right)^{4.5} & \text{for } \phi \ge 1.35 \end{cases}$$

$$\phi = \tau_b / \tau_{ri} \qquad W_i^* = \frac{Rgq_{bi}}{F_i u_*^3}$$

Sediment transport and morphological models

Bank erosion: Gravitational collapse model (Osman and Thorne, 1988)

Flow shear stress: $\tau_f = \gamma_w n^2 u^2 h^{-1/3}$

Critical shear stress: $\tau_c = 0.047(\gamma_{bk} - \gamma_w)d_{50}$ Bank retreat during Δt : $\Delta B = \frac{C_l(\tau_f - \tau_c)}{\gamma_{bk}}e^{(-1.3\tau_c)}\Delta t$

Bank erosion: Morphodynamic model (Cantelli et al., 2007)

Erosion caused by bedload transport at bed and banks

 $(1 - \lambda_p)(\eta_t - \eta_b)\frac{\partial B_b}{\partial t} = (1 - \lambda_p)\frac{\eta_t - \eta_b}{S}\frac{\partial \eta_b}{\partial t} + \frac{1}{S}\frac{\partial(q_{sx}H)}{\partial x} + \frac{\partial B_b}{\partial x} + q_{sy}$ 53/107

RA1: Hydrological simulation:

- Rainfall data input: Spatial inhomogeneity
- Parameter calibration

RA2: Hydrodynamic simulation:

- Governing equations and numerical schemes
- Sediment transport and morphological models
- Flow resistance

RA3: Information techniques

Parallel computing techniques:

Flow resistance: Manning coefficient n

J

$$U = \frac{1}{n} R^{2/3} S^{1/2}$$

$$n = \frac{k_s^{1/6}}{A}?$$

$$n = n(Q, d, J)$$

56/107

Proposed formula for mountain streams:

$$1/n = 0.66Q^{0.14}g^{0.43}/(d_{90}^{0.52}J^{0.26})$$

Applicable to mountain streams similar to the Longxi River

A potentially unified formula of form resistance:

Validated against a large set of field data with slope ranging from 0.004% to 28.7% covering both alluvial and mountain rivers.

RA1: Hydrological simulation:

- Rainfall data input: Spatial inhomogeneity
- Parameter calibration

RA2: Hydrodynamic simulation:

- Governing equations and numerical schemes
- Sediment transport and morphological models
- Flow resistance

RA3: Information techniques

Parallel computing techniques

Universal drainage network coding method based on binary tree theory: from (Layer Number, Node Number) to (Layer Number, Node Number, Pnode Number)

Universal drainage network coding method 雅鲁戴布江流域DBM 132 - 2,074 Coding result for 36°0'0'N 36°0'0"N 2.074 - 3.477 3,477 - 4,396 Yarlung Zangbo River 4,396 - 5,058 5,058 - 7,093 33°0'0"N 33°0'0'N (a) 30°0'0 27°0'0"N 27°0'0'N 81°0'0"E 90°0'0"E 93°0'0"E 96°0'0"E 84°0'0"E 87°0'0"E 99°0'0"E (1466, 46, 93) (1468, 49, 51) (1466, 44, 41) (1465, 43, 41) (1468, 48, 51) (1467, 51, 43) (1466, 45, 43) 11467,50,431 (1466, 43, 41) (1465, 41, 40) (1464, 41, 44) (1464, 40, 44) (1463, 44, 50) (1465, 40, 40) (c) b 60/107

Minimum CPU number for maximum speed-up ratio and its parallel computing algorithm

Parallel computing algorithm: discretization in both

- 1. Overview of flash flood hazards
- 2. Modeling of flash flood
- 3. Exaggerated flood hazard
- 4. Toward future: ongoing efforts
- 5. Summary

Extreme flash flood disaster:

August 8, 2010: Zhouqu County in Gansu Province 3887 people were killed.

Extreme flash flood disaster:

August 13, 2010: Sichuan Province

Wenchuan: 72 people killed or lost Qingping: 12 people killed or lost

Caused by extreme flood or other reasons?

extreme flood?

other reasons?

Question 1: features of extreme flood?

Any differences from regular flash flood? Defined as the flood with a 50-year water stage?

Question 2: formation mechanism?

Tromp-van Meerveld & McDonnell (2006, WRR, W02410): Panola Mountain Research Watershed (Georgia, USA) hillslope (50m long, 20m wide, 13°)

Observation: rainfall threshold and abrupt increase in runoff

Close to the epicenter of the 2008 Wenchuan Earthquake Subsequent landslides and debris flows

River deposition: average aggradation of 7~8 m

Heavy rainfall on Aug 13-14, 2010: Flooding

Yinxiu City (映秀):

- Epicenter of the 2008 Wenchuan earthquake
- ▶ Near to Dujiangyan 都江堰

70/107

Heavy rainfall on Aug 13-14, 2010: Flooding

Longxi River:

- Close to Yinxiu City
- ▶ Near to Dujiangyan 都江堰

71/107

Case study of Longxi River

Monitoring system: rainfall, flow & soil moisture

1)Jiapinggou: rainfall, water stage, soil moisture profile

Area: 3 km² Channel slope: >20%

2)Longxi River: rainfall, water stage

Drainage area: 79 km² Channel slope >10%

Monitoring system: rainfall, flow, and soil moisture

Captured spatial inhomogeneity of rainfall

Installed soil moisture profiler

Silty clay

Bed material gradation:

Design rainstorms

Recurrence interval: 10-, 20-, 50-, 100-, 200-year

Duration: 6 h, 24h

Analysis of flood properties

InHM (Ran et al., 2013) provides hydrological boundaries under designed rainstorms

Initial soil moisture significantly affects the peak discharge (Jianpinggou, 6h rainstorm)

Soil percent saturation = 80% vs. percent saturation = 20%

Peak discharge-total rainfall curveThreshold behaviorWater level rising time-total rainfall curveat 50-year storm?

Two peaks: hydrological response vs. flow convergence

Separate or merged peaks Heavier rainfall → faster flow convergence → merged peaks (around the 50-year rainfall) – explaining the threshold

Analysis of flood properties altered by sediment

Computational domain:

Zhucao Valley to Nanyue Village, 4.4km

Cross section:

🖈 Trapezoidal

Bed width: 12.0 m at inlet; 25.2 m at outlet.

Sediment size:

(pebble count method)

 d_{90} : 0.1~0.5m; d_{50} : 0.05~0.2m

Analysis of flood properties altered by sediment

> Proposed resistance formula (Zhang et al, 2012):

$$1/n = 0.66Q^{0.14}g^{0.43} / (d_{90}^{0.52}J^{0.26})$$

Additional resistance from bedload transport (Wang & Chien, 1985; Dietrich and Whiting, 1990; Matousek, 2013)

$$k_{sm} = 2.31\delta_b + k_s \qquad \delta_b = \frac{1.2d_m (1 - \cos \varphi)(\tau_b / \tau_c)}{1 + 0.2(\tau_b / \tau_c)}$$

Analysis of flood properties altered by sediment

Scenarios of designed rainstorms:

Rainfall	Peak discharge
50-year	150 m³/s
100-year	260 m ³ /s
200-year	410 m ³ /s

✓ Before earthquake: fixed bed in computation

After earthquake: movable bed covered with freely-erodible sediment

Analysis of flood properties altered by sediment

- Aug 18, 2012: a flood with peak discharge of 130 m³/s at the inlet
- Field survey: flood stage at the steel bridge (3.8 km from the inlet) is 1.6 m.
- > Simulation: flood stage at the same site is 1.80 m

Analysis of flood properties altered by sediment

Analysis of flood properties altered by sediment

Before and after the earthquake (Scenario: 50-year rainfall)

Analysis of flood properties altered by sediment

- 1. Overview of flash flood hazards
- 2. Modeling of flash flood
- 3. Exaggerated flood hazard
- 4. Toward future: ongoing efforts
- 5. Summary

Toward flood modeling and forecast in future

From small watershed to large river basins

From experts to common inhabitants

Facts:

Data for large-scale region

☆NWP data for forecast
☆Radar data for imminent forecast
☆Satellite data for history simulation

Model for large-scale region

- \Rightarrow Distributed models
- \Rightarrow HPC for hardware base

Use for community

☆ Web service for the public

Data from numerical weather prediction (NWP)

The TIGGE data

THORPEX:

The Observing System Research and Predictability Experiment

- TIGGE: THORPEX Interactive Grand Global Ensemble
- Participating agencies

e.g., CMA, CMC, CPTEC, ECMWF, NCEP, and UKMO

The same temporal resolution (i.e., 6 hours) Different spatial resolutions (e.g., 9/16° for the CMA and 1° for the NCEP)

The forecast lead time: 1-16 days

The GFS data.....

Satellite-derived rainfall datasets

The **CMORPH**

- > NOAA
- Morphing Technique
- Participating agencies National Oceanic and Atmospheric Administration, Climate Prediction Center, e.g., SSM/I, AMSU-B, AMSR-E, TMI

Temporal resolution : 30 min Spatial resolutions: 8 km The downloadable time: about 4 hr after event Satellite coverage: 60 $^{\circ}$ N \sim 60 $^{\circ}$ S Starting time: 2003

The TRMM

Ongoing efforts

Global Drainage Network: Hydro30 High resolution river reaches with detailed information

Web service would be highly valuable for users to enhance the awareness of flood risk.

🚮 🗋 Global Flash Flood Predicti 🗙 🕁

- 0

9 1 3.

23

Submit the simulation case online Case simulation based on the NWP data

http://42.159.24.58:8010/GloF3S_V2.0/English/main.html

Global Flash Flood Prediction

Ongoing efforts

③ 清華大学

Tsinghua University

INGA

Observed data http://42.159.24.58:8010/GloF3S V2.0/English/main.html Q 1 **Global Flash Flood Prediction** River Network Base Map Meteorological Simulation Scenario Management Hydrology Modelling cenario No Scenario Name Discharge Hydrograph Zhangfang Station 0 20140329HP003 Qianjiang_Branch Add Scenario Scenario Set 20140401HP002 Beijing721 Region Set 20140315HP010 TestScheme10 · The observed data Region Select By Point 2500 20140416HP001 Mississippi -Computed with the **Region Select By Frame** 20140401HP001 00001 TIGGE data 200 **Region Segment Delete** 1 1500 **Region Select Submit** Selected Scenario : 1000 Beijing721 0: 0 Selection Clean Scenario Delete Map Refresh Simulation Submit 2012/7/21 4:00 2012/7/21 16:00 2012/7/22 4:00 2012/7/22 16:00 Time Datong Reiling Tangshar Baoding O Tianiin Hydrodynamic Modelling Weather Forecasting Animation 0 Taiyuan Integrated Modelling 113º 33' 12" E 38º 55' 55" N Shijiazhuang 2012年07月22日00时 SHANXI Scenario Management Handan Jinan Zibo Weitan 50 km • ۶. . System Management 30 m SHANDONG Exit ♥ 滞98/107 💽 浏览器医生 🎧 皮肤 🕹 下载

Flood forecast framework based on history simulation data

Shi HY, Li TJ, Liu RH, Chen J, Li JY, Zhang A, Wang GQ. 2015a. A service-oriented architecture for ensemble flood forecast from numerical weather prediction. Journal of Hydrology 527: 933-942.

Requirement of data resolution: Case in Southern China

Requirement of data resolution: Case in Northern China

Basin: Dashihe river (Tributary of Jumahe River) in Beijing Area: 513 km² Period: 2012.7.21-22 NSE of calibration : 0.75

Ongoing efforts

Merged data from rainfall gauges and satellite (CMORPH)

Tsinghua University

The simulation results based on the merged data show the best performance: with two runoff peaks found in the observation

- 1. Overview of flash flood hazards
- 2. Modeling of flash flood
- 3. Exaggerated flood hazard
- 4. Toward future: ongoing efforts
- 5. Summary

- Flash flood hazard is affected by both the weather and underlying surface conditions. Its formation and developing into a disaster is very complicated.
- The Digital Watershed Model is a couple hydrologicalhydraulic modeling system that can simulate the runoff and soil erosion for large drainage basins. It is featured through its physically-based processes and information techniques.
- Extreme flash flood differ from a regular flash flood through its peak discharge (the stage rising time) – total rainfall relationship. Both hydrological response and flow convergence contribute to its formation.

- Sediment transport and aggradation may significantly change the properties of flash flood. It can result in extreme flash flood hazard, in particular, in earthquake hit regions.
- Toward flash flood modeling and forecast in future, the extension from small watershed to large river basins and from experts to common inhabitants is emerging.

Thank you!

Questions and Discussions?

