Overview of QPE/QPF techniques and hydrological applications

Siriluk Chumchean

Department of Civil Engineering Mahanakorn University of Technology

Typhoon Committee Roving Seminar 2011, Malaysia (20-23 September 2011)

Talk Structure

Lecture A1: QPE techniques and development

- Real-time radar rainfall estimates
- Case studies

Lectuer A2: QPF techniques and development

- QPF techniques (Radar-based nowcasting)
- Operation and research development systems
- QPF accuracy assessment
- Case study : Bangkok rainfall forecasting system

Lecture A3: Hydrological Applications

Cases studies

Real-time Radar Rainfall Estimation – An Overview

Why do we need weather radar ?

- Measure rainfall continuously covering large area
- Provide fine spatial and temporal resolution
- Can be used to project the storm trajectory, i.e., provide a short-term storm forecast

Volume scan data

Range from radar (km)

Simplified scheme of radar processing

Polar and cartesian coordinates

PPI

PPI reflectivity map is extracted from the raw reflectivity data from the beam at a particular elevation angle.

CAPPI

Constant Altitude Plan Precipitation Indicator (CAPPI)

Problems and Limitations

- Are parameters measurable?
- Are parameters stable?
- Does reliability stay constant with distance away from the radar?
- What about obstructions (buildings, mountains)?
- What about multiple raindrops and rain-clouds in the path of the beam?
- What about the effect of the earth's curvature?
- What about differences in rain profile on ground versus high elevations?

$$Z = AR^{b}$$

where

- A,b radar parameters
- Z reflectivity
- R rainfall

Problems of using weather radar?

- 1. Reflectivity measurement error
 - ground clutter
 - attenuation
 - vertical reflectivity profile
 - beam geometry

- 2. Reflectivity-rainfall rate conversion error
- 3. Residual errors when compared with rain gauges

Some difficulties ...

 Ground-clutter, bright-band, hail, attenuation, range dependent bias – not so difficult to remove as they can be noticed easily

Some difficulties ... Distance vs height of radar beam

Some difficulties ...

 Increasing uncertainty in measured reflectivity as a function of range

Some difficulties ...Range dependent errors

Some difficulties ...Range dependent errors

Anagnostou et al. (1999)

Some difficulties ... Attenuation example

Radar Flechtdorf

Radar Essen

Einfalt (2004)

Some difficulties ... Bright-band

Some difficulties...Effect of storm types on Z-R relation

$$Z = \int_{0}^{\alpha} N_{o} e^{-AD} D^{6} dD$$

$$R = \int_{0}^{\alpha} N_{o} e^{-AD} \frac{4}{3} \pi \left(\frac{D}{2}\right)^{3} \nu(D) dD$$

Convective

Stratiform

Z-R relationship for each rain-cloud

Parameters 'a' and 'b' varies on rain drop size distribution.

Z-R relationship of each type of rain-cloud (Calibration)

Z-R relationship of each type of rain-cloud

Some difficulties ...

- Residual errors results in a "mean-field-bias"
- Exhibits persistence from one time-step to the next
- Very important in real-time estimation
- Difficult to remove using physical relations

Philosophy

"Estimated radar rainfall must first be corrected for reflectivity measurement errors and *Z*-*R* conversion errors based on the physical methods, and then a statistical method will be used to remove the average difference (mean field bias) between radar estimates at the rain gauge locations and the corresponding gauge rainfall amounts".

Real-time radar rainfall estimation method

Chumchean et al. (2006)

Real-time radar rainfall estimation

Scaling correction (to remove range-dependent bias) + Storm classification (to remove bias in Z~R relation due to the dominant storm type) +Correction of residual mean-field bias

Data

- C-band Kurnell radar
- 10-minute, 1km²
 resolution
- Analysis period
 November 2000 to
 April 2001
- 254 hourly rain gauges (SWC,SCA,BoM)

Correction of range dependent bias due to radar beam geometry

Application of scaling in measured reflectivity

Assume simple scaling holds for measured reflectivity

$$Z_D \stackrel{dist}{=} (d / D)^{-\eta} Z_d$$

Scale transformation function

The proposed scale transformation formula is :

Transformed reflectivity (dBZ)

$$Z_{\text{transformed (dBZ)}} = (20/D)^{-0.024} Z_{\text{D(dBZ)}}$$

33

Range-dependent bias correction

Using simple-scaling theory¹: $Z_{\text{transformed (dBZ)}} = (20/D)^{-0.024} Z_{D(dBZ)}$

¹Chumchean et al, 2004, J Atmospheric and Oceanic Technology

Effectiveness of scale transformation function in correcting range dependent bias in radar rainfall

Effect of storm types on radar rainfall Estimates (Z-R conversion error)

Instantaneous pixel classification

Apply Steiner et al.(1995) storm classification method to use for separation of instantaneous reflectivity of each pixel into convective or stratiform components

Revise the classification criteria to be suitable for instantaneous reflectivity of the Kurnell radar

Parameter for pixel classification

(after Steiner et al., 1995)

- convective centre
- background radius
- convective radius
- minimum convective threshold*
- maximum stratiform threshold*

Classification results: calibration

Using modified Parameters based on Steiner et al. (1995)

Classification results: verification

Verification using VPR

Correcting for mean field bias in real-time radar rainfall estimates using Kalman **Filtering techniques Rain gauge rainfall (G) = (AF)x Radar rainfall (R)**

AF = adjustment factor or mean field bias

Advantage of Kalman filtering technique over the simple G/R

- 1) It accounts for the "noise" in the measurements when updating the mean bias.
- 2) It provides an estimate of the error in the computed bias.
- 3) It combines an estimate of the bias and its error variance made an hour earlier with the current measurements and its estimated measurement error variance to compute an updated bias estimate and new forecast for the next hour.

Residual mean-field bias correction¹

- Logarithmic Mean
 Field Bias (β)
- Assumed β exhibits Markovian dependence (Kalman process model assumed AR1)
- Kalman measurement error model specified as function of range²

$$\beta_t = \frac{1}{n} \sum_{i=1}^n \log_{10} \left(\frac{G_{i,t}}{R_{i,t}} \right)$$

¹Chumchean et al, 2006, Journal of Hydrology,²Chumchean et al, 2003, Physics and Chemistry of the Earth, 28(3), 27-39.

Radar rainfall error variance model

$$\sigma_{Y_{i,t}}^2 = -0.015 \times \overline{G_t} + 0.14 \quad ; \quad \text{for } r_i \le 55 \text{ km}$$

$$\sigma_{Y_{i,t}}^2 = -0.015 \times \overline{G_t} + 0.13 \times \frac{(r_i - 55)}{p} + 0.14 \quad ; \quad \text{for } r_i \ge 55 \text{ km}$$

Comparison of observed G/R and the Kalman-filter estimated bias (Calibration)

Comparison of observed G/R and the Kalman-filter estimated bias (Validation)

Application

- Stepwise application of error correction strategies
- Base reflectivity data free of effects of ground-clutter, bright-beam, hail
- Total rain gauges 260
- Cross-validation performed by leaving fraction of rain gauges to evaluate predictive uncertainty
- Performance statistic Root Mean Square Error (RMSE)

Results

Climatological *Z-R* parameters of convective and stratiform rainfall

$$(Z = AR^{1.5})$$

Calibration strategies	A parameter			
	No scaling correction		Scaling correction	
	Convective	Stratiform	Convective	Stratiform
No-classification	128		146	
Hourly pixel classification	150	93	172	100

Results

Results

51

Conclusions

- A stepwise decrease in RMSE with added levels of error correction
- Correcting mean-field bias more important that correcting the other sources of errors
- Storm classification relatively more important than the correction of range dependent bias
- Kalman filtering much better than use of sample G/R correction, particularly when calibration rain gauges are few

Conclusions

- Range dependent bias and storm-classification, though small, are certainly not insignificant
- Complete model (after mean-field bias correction) explains more than 50% variance of gauge rainfall
- This may be the best we will ever have remember we are comparing 1kmx1km grid averages to rainfall at a point!