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Home work

* How to improve our forecast skill for TC
rainfall?



“First” study on rainfall of tropical
cyclone in 1916

CO-CHINQ CEU, A. M. 1916

five tropical storms in 1911 are
concerned

(1) That the distribution of rainfall in
tropical storms is uniformed

(2)the heaviest rainfall usually occurs on

that portion of the coast where the
storm passed from sea to land
(3)that the heaviest precipitation
usually occurs along the trajectory.




Early development

e Allison et al. 1974 : from the unique
combination of infrared visible, and
microwave data from the nimbus 5
Electronically Scanning Microwave
Radiometer(ESMR), the Temperature-
Humidity Infrared Radiometer(THIP)
NoAA-2 and USAF DMSP imageries, to

estimate Semi-quantitatively area

of light, moderate and heavy
rainfall rates.
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Early development

*Rodgers and Adler 1980: used ESMR to derive Latent heat release (LHR)

1) TC intensification is indicated by the increase in the RSMR-5 derived LHR,
increase in the relative contribution of the heavier rain rate (> 5mm/h) to the total
storm rainfall, and the decrease in the radius of the maximum rain rate from the

cyclone center.

2) Increasing LHR is the first indication of TC intensification 1-2 days prior to the TC

reaching storm stage

3) As the mean tropical cyclone
intensify from disturbance to
Typhoon stage the average LHR
increases steadily. The mean relative
contribution of the heavier rate to
the total storm rainfall increases
from 0.24 at depression stage to 0.33
at storm at storm stage and finally to
0.39 at typhoon stage.
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FiG. 3. Latent heat release (LHR) as a funciion of time for tropical cyclone Irma. Calculations
are shown for circular areas of 222 and 444 km radius for freezing levels 4.5 km (dashed) and 5 km (solid).
Mumbers in parentheses are fractions of rainfall contributed by rainfall rates > S mm h™".



TC rainfall study are based on satellite observation

ESMR , SSM/I , TRMM

Based on surface observation (landfalling TC)

€ Overview of TC rainfall over Monsoon region in Western North Pacific

» Early development

» TC rainfall climatology

> TC rainfall structure

What is TC rainfall?
How to separate TC rainfall from total rainfall ?



the Method to partition TC precipitation

From Ren Fuming

How to deal with the issue ?

Subjective methods

accurate blAt slow

what weather forecasters do

the expert subjective method (ESM) using in
Shanghai Typhoon Institute for more than 50 years

: accurate and

Objective methods

quick but hot easy to
Homogeneity e accurate

a certain circle around
the TC center(Phil et al., 2001; Akira,2005).

} Ll
an adaptive circle ?
not ok

relationship between the TC’s size and its intensity
is not good enough

(Merrill, 1984, Weatherford and Gray, 1988a ,b,

Liu and Chan, 1999) 1

-------- a new method is needed



Contribution of Tropical Cyclones to the North Pacific Climatological

Rainfall as Observed from Satellite(June-November) (a certain radius)
Tropical Cyclone Rain
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Mean Monthly Rainfall (mm month 1)
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Mean Monthly Rainfall (mm month™ )

Mean Rain Rate (mm h' ')
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Roger

1) tropical cyclones contribute 12% of the rainfall
to the Western North Pacific during the tropical
cyclone

2)tropical cyclones contribute a maximum of 30%
northeast of the Philippine Islands

3) in general, tropical cyclone rainfall is enhanced
during the El Nin"o years by warm SSTs in the
eastern North Pacific and by the monsoon trough
in the western and central North Pacific.
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Annual TC rain and its
percentage in total rain
from 1997 to 2006 (after Wei
2010 using CMORPH data

objective method)
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Comparison between Roger and Wei

Tropical Cyclone Rain

Different definition of TC
rainfall
Different data set and
time series
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Anomalies of TC precipitation in El
Nino and La Nina year from 1997-2006

E1 Nino%E: 1997 2002 2006
La Nina®: 1998 1999 2000

El Nino

[La Nina

Latitude




TC frequency, influence day duration and average rainfall of TC

ElI Nino La Nina

year 2003 | 2004 | 2005
1¢ 25| 34| 24
Frequency
Influence 169! 202! 118
day
Duration
6.8/ 5.9| 4.9

(day)
Volume of

TC

rainfall 0.32| 0.3]| 0.25

104km3




Climate Features of TCP over China
1957-2005

Annual climatic characteristics

Seasonal variations

Climate changes
(Fu et. al 2008)




Climate Features of TCP over China

Climate Features of TCP over China

Annual climatic characteristics(1)
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Climate Features of TCP over China

Climate Features of TCP over China

Annual climatic characteristics(2)
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Climate Features of TCP over China

Climate Features of TCP over China

Annual climatic characteristics(3)

statistics of station TC torrential precipitation(>50mm/day)
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Climate Features of TCP over China
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Climate Features of TCP over China

monthly mean TCP for Jun

Seasonal variations(1)

Spatial distribution of average monthly
typhoon precipitation (unit: mm)
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Climate Features of TCP over China

Climate Features of TCP over China

Seasonal variations(2)

Spatial distribution of ratio of average monthly typhoon
precipitation to average total rainfall (unit: %)

monthly mean TCP rate for Jun. monthly mean TCP rate for Jul. monthly mean TCP rate for Aug.
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Climate Features of TCP over China

Climate Features of TCP over China

precipitation volume (km®)
I
S
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Climate changes(1)

~ Variations of total annual volume
of TC precipitation for China
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Climate Features of TCP over China

Climate Features of TCP over China

Climate changes(2)
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(square boxes indicating statistically significant at 0.05 level by Kendall test)



el Despite interdecadal and interannual variations, a significant downward trend
is found in the TCP volume, the total annual frequency of the torrential TCP
events and the ratio of TC precipitation to total rainfall over the past about 50
years.

Clinr

Climate changes(3)
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—e— frequency of influencing TC
—s— frequency of influencing typhoon

Variations of frequency of influencing TC and
influencing typhoon (MSWS >32.7m/s) for China

coefficients with TC precipitation are 0.62 and 0.47, respectively



Tropical Cyclone— and Monsoon-Induced Rainfall
Variability in Taiwan
Chen et. al 2010

1) Climatologically, what are the relative contributions of rainfall
subcomponents associated with monsoon and TC activity to total
rainfall for Taiwan?

2) On an interannual time scale, what are the major rainfall
variability types induced by monsoon and TC activity for Taiwan?
What are the corresponding large scale processes regulating rainfall
variability?

3) Does the present approach of analyzing rainfall by two major
subcomponents help us to better understand interannual rainfall
variability as compared with the conventional approach of using
total rainfall as an index?



Tropical Cyclone— and Monsoon-Induced Rainfall Variability in
Taiwan
Chen et. al 2010 (July—September for the period 1950—-2002)
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with a simultaneous negative correlation (-0.46)ver Taiwan: (a) TC rainfall and (b) seasonal monsoon rainfall;
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Tropical Cyclone— and Monsoon-Induced Rainfall
Variability in Taiwan
Chen et. al 2010
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Tropical Cyclone— and Monsoon-Induced Rainfall

Variability in Taiwan
Chen et. al 2010

FiG. 12. Schematic diagrams for the major processes regulating
rainfall variability in Taiwan: (a) the T+5~ type and (b) the T—5+
type. In (a), decreased Pgy (5=) is caused by anomalous north
easterly water vapor fluxes (light arrow) and weak vertical motion
over the western boundary of the anomalous cyclone. Increased
Pre (T+ ) concurswith more TC formation in the regions southeast
of Taiwan (more & symbaols) and mean southeasterly flows to steer
TCs toward Taiwan (dark solid arrow). In (b), increased Poy (5+)
15 induced by strong ascending motion (dark slashed arrow) and
enhanced water vapor fluxes from the SCS into Taiwan (dark solid
arrow ) nearby the anomalous cvelone center. Decreased Pro (T—)
concurs with reduced TC formation (fewer @ svmbols) and mean
southerly flows to guide TCs toward Japan and the North Pacific
(light arrow).

These findings are potentially useful for
improved regional climate prediction. Because
the physical mechanisms that regulate the two
rainfall subcomponents are different, it is
necessary to predict TC and seasonal

monsoon rainfall anomalies separately by
building different statistical models.
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Tropical cyclones and heavy rainfall in Fujian Province,
China(66 station 1960-2007, Yin et. al 2010)

The number of heavy rain days is higher during El Nifio years, although the
number of TCs affecting Fujian in general is higher during La Nifia years

On an average for the 30 coastal stations, 36
(El Nifio years) and 28 (La Nifia years) HRDs
were measured 1960 to 2007. 56% of these
were triggered by TCs during El Nifio years and
47% of heavy rainfall days were triggered by
TCs during La Nifa years.
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Fig. 1. Location of Fujian Province and zone marking impact of tropical cyclones.



@ Overview of TC rainfall over Monsoon region in Western
North Pacific

» Early development
»TC rainfall climatology

> TC rainfall structure



Rainfall structure in tropical cyclone
(Rodgers et, al 1994 SSMI)

found that more intense Tropical Cyclone Florence
systems had higher rain rates, 1020 ——T——T——T——T—T——40 @
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Relation between rainfall and tropical cyclone over Altantic and
northern pacific region (CERVENY & NEWMAN 2000)

1979-1995 year 877 Tcs 2000
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Strong relationships were found to exist
between daily rainfall accumulation and a TC’s
daily maximum surface wind speeds.

The precipitation associated with
the inner core is generally representative of
the cyclone’s total rainfall.



Relation between rainfall and tropical cyclone over altantic and
northern pacific region (CERVENY & NEWMAN 2000)

1979-1995 year 877 Tcs

Ratio of Center Gridcell Rainfall to
Tobal Tropical Cyclonic Rainfall (22)

Fic. 5. Ratio of the center grid cell rainfall to the average tropic
cyclonic rainfall (in percent) stratified by maximum surface wi-
speed (10-kt categories). Bars indicate one standard error deviatis

about the mean,.
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The relationship between the ratio of
inner-core rainfall and the total storm
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demonstrates a U-shaped pattern.
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Fic. 6. Center grid cell (inner core) rainfall (squares) and outer
grid cells (spiral band) rainfall (diamonds) stratified by maximum
surface wind speed (10-kt categories). Bars indicate one standard
error deviation about the mean.



TRMM TMI during the period from 1 Jan 1998 to 31 Dec 2000
2121 instantaneous TC precipitation observations
Lonfat et.al. 2004

Latitude (degrees)
o

i
b
-
-

Longitude (degrees)

F1G. 1. Tropical cyclones observed by TMI during the period from 1 Jan 1998 to 31 Dec
2000. Each dot represents one TRMM observation. The solid lines indicate the boundaries
of the six active oceanic basins.
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The location of the maximum rainfall shifts from the front-left quadrant for TS to the
front-right for CAT35. The amplitude of the asymmetry varies with intensity as well; TS
shows a larger asymmetry than CAT12 and CAT35.
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FiG. 17. Rainfall asymmetry calculated in 10-km rings around the storm center, as a function of storm intensity:
(a) 2121 TC observations (total distribution), (b) TS, (c) CAT12, (d) CAT35. The storm motion vector is aligned
with the positive y axis. The color scale indicates the amplitude of the normalized asymmetry. The red cor-
responds to the maximum positive anomaly and the blue the minimum rainfall within the storm.



Effects of Vertical Wind Shear and Storm Motion on Tropical
Cyclone Rainfall Asymmetries Deduced from TRMM
(chen et. Al. 2006) (global view data 1998-2000)

* The environmental vertical wind shear is defined as the
difference between the mean wind vectors of the 200-
and 850-hPalevels over an outer region extending from
the radius of 200—800 km around the storm center.

e The wavenumber 1 maximum rainfall asymmetry is
downshear left (right) in the Northern (Southern)
Hemisphere. The rainfall asymmetry decreases
(increases) with storm intensity (shear strength).

* The rainfall asymmetry maximum is predominantly
downshear left for shear values 7.5 m /s



Effects of Vertical Wind Shear and Storm Motion on Tropical
Cyclone Rainfall Asymmetries Deduced from TRMM
(chen et. Al. 2006) (global view data 1998-2000)

e |tis found that the vertical wind shear is a dominant factor
for the rainfall asymmetry when shear is 5 m/s. The storm
motion—relative rainfall asymmetry in the outer rainband
region is comparable to that of shear relative when the
shear is 5 m/s, suggesting that TC translation speed
becomes an important factor in the low shear environment.
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rainfall distribution in in tropical storm
Bilis 2006 (Yu et al 2009)
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Consistent with previous modeling studies, heavy rainfall generally occurred
downshear to downshear-left of the VWS vector both near and outside the
eyewall



Further study on relationship on magnitude between vertical
wind shear and rainfall asymmetry
(UENO 2007)

WOm, py =

Um
R 1M

(o Boman)s /(LT § = 2U/(pr - pv),
rm,pM p ﬁp m1pH}

Where the subscript m denotes that the quanity is evaluated at the
radius of maximum wind Rm.
A similar expression for vertical p velocity on the uptilt side.

It is time-independent solution, and gives an amplitude of vertical
motion asymmetry.



Further study on relationship on magnitude between
vertical wind shear and rainfall asymmetry

(b) Omega
—0O— Rain-ratz

— === Shear

(a) Omega
—&—  Rain-rate

Amplitude of WN1 components or shear
Amplitude of WN1 components or shear

23

19 21 23 25 27 29 3l Ii

Day Day

Fig. 11. Same as Fig. 7 but for comparison of “analytical” omega (thick solid line, in units of Pa s L
with magnitude of wavenumber-one rainfall asymmetry (thin solid line with open squares,
mm h~1), and vertical wind shear (dashed line, m s~1). For plotting purposes, the magnitude of
wavenumber-one rainfall asymmetry, and shear are divided by 3 and 7, respectively.

the magnitude of vertical motion asymmetry is well correlated with that
simulated rainfall asymemetry in the inner-core region,

suggesting a strong dependance of rainfall asymmetry on the vortex intensity, as
well as the shear magnitude



Effects of Vertical Wind Shear on Tropical Cyclone Precipitation
Wingo* and Celic 2010
data 1988-2002 using 20 000 snapshots of passive-microwave satellite rain rates

8 , r 1) Results indicated that precipitation is
I smoressmnsms | displaced downshear and to the left (right for
oL shoor Betmenn 5 o 10 m | OOUthErn Hemisphere) of the shear vector.
Tl oo o 1 2) The amplitude of this displacement
£ T increases with stronger shear.
s | 3)The majority of the asymmetry found in the
5| | mean rain rates is accounted for by the
2N 7| asymmetry in the occurrence of heavy rain.
I -- 7 4) Itis shown that the effect that shear has on
- == === the rain field is nearly instantaneous.
Rudius from Storm Center (k)
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FIG. 4. Mean rain rates for hurricanes with shear (a) <3, (b) 5-10, and (¢) =10 m s™*. Contours of 4 and 8 mm h™" are in bold.



Effects of Vertical Wind Shear on Tropical Cyclone Precipitation
Wingo™* and Celic 2010
data 1988-2002 using 20 000 snapshots of passive-microwave satellite rain rates

a decline in the asymmetry with increasing hurricane
intensity. This seems to contradict Ueno’s (2007)
conclusion that the amplitudes of vertical motion and
precipitation asymmetries increase with increasing shear
magnitude and increasing vortex strength. More generally,
major hurricanes do tend to appear more symmetric
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FI1G. 11. Mean rain rates for (a) tropical storms, (b) CAT12 hurricanes, and (¢) CAT35 hurricanes in a strong shear environment
(=10 m s™"). Contours of 4, 8, and 12 mm h™" are in bold.



Factors may affect TC precipitation
(distribution, intensity and duration)

e Climatology view  Weather view
— TC frequency — Environment flow
— TC track (Vertical wind shear)
— TC intensity — TCSize
— TC size — TC structure
— TC Track
— landuse

Monsoon environment
(SST, MJO.....)



Index

Overview of TC rainfall over Monsoon region in Western North Pacific
— Early development
— TC rainfall climatology
— TC rainfall structure

Monsoon influence on TC precipitation
— SST

— Meiyu front

— subtropical high

— Southwesterly monsoon

— Northwesterly monsoon

Interaction between tropical cyclone and southwesterly monsoon
— Case study on Bilis 2006
— Climatology

Study on the potential impact of landfalling TC in Mainland China (How to
estimate economic loss by TC before their landfall in Mainland China)

How to predict the development of tropical disturbance over SCS.
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Experiment name

‘OBS
IM2
Control
P2
1P4
CM2
CP2
CP5
ALL2

130° 1WSO°
SST variation (°C)
Connie Irma
0. Gulf as observed
0. ~2. (gulf = 27°C)
0. 0. (gulf = 29°C)
0. +2. (gulf = 31°C)
0, +4, (gulf = 33°C)
-2 0.
+2. 0.
+5. 0.
+2. 12

SST Increased evaporation and moisture
cycling due to warm SST

Enhanced convective activity due to
destabilization and drying of the
atmospheric boundary layer

2) Historical data indicate that SST 18 not the over-
riding factor in determining the maximum intensity
attained by a storm, so other environmental changes
will be critical to the ultimate intensity attained by a
tropical cyclone.

Connie Irma

Experiment 24-h results  Rain  Pressure  Rain  Pressure

OBS 33.5 993.0 29.0  1008.0
IM2 34.8 993.1 26.3 1008.7
Control 334 993.1 28.5 1008.5
P2 33.7 992.9 321 1007.7
IP4 33.6 993.0 39.7 1006.6
M2 30.4 993.9 29.4 1008.7
CP2 375 992.2 28.7 1008.6
CP3 34.0 984.3 28.5 1008.1
ALL2 374 992.2 333 1007.6

Sensitivity of Tropical Cyclone Rainfall Intensity to Sea Surface Temperature
(Evans 1994)



Intensity change

GANDIKOTA V. Rao AND P. DouGgLAsS MACARTHUR

12
? TYPHOOMN LYNN
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A | 980 E
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FIG. 6. Rain volume rates within 55.5-km boxes of Typhoon Lynn
(1987) and 24-h central pressure. Time is counted from 0000 UTC
17 October 1987. Linear fit data: for 55.5 km boxes, P = ~59R
+ 1016.3; R is in units cubic millimeters per hour. Note the negative
correlation between rain volume rates and 24-h pressure of Typhoon
Lynn.

SSM/I rainfall rates from 27 maps times 12 typhoon of 1987

Rain volume rates within a 444-km box correlate with the future 24-h
pressure was -0.68

A northwestward-moving storm was likely to deepen if lighter
(£3mm/h)rainfall rates dominated a 222-km box



Monsoon Environment and Tropical
Cyclone Motion

Typical track changes associated with the 10

interaction between a tropical cyclone and

a monsoon gyre. Dots

indicate 6-h positions for 96 h of 5 f
simulated tracks of three tropical cyclones

placed at 600, 700, and 800 km east of 4
the center of a monsoon gyre. (Adapted

from Carr and Elsberry 1995). 9

Carr and Elsberry (1995)
0 2 4 6 8

DISTANCE (km x 100)
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TC influence to Meiyu front
Chen et. al. 1999

e Statistics (Cheng et al. 1999) show that 85% of Mei-yu
rainfall can be reduced, suspended or ended when a

typhoon appears in southern coastal waters or makes
landfall in South China.

e compared results with and without Typhoon Zeke showed
that, during landfall, it could affect the moisture
transportation channel from the Bay of Ben-gal and South
China Sea to the Yangtze River Basin.

* Additionally, the western ridge of the subtropical high was
shifted signifcantly northward by the typhoon. Meanwhile,
mei-yu Front circulation and its energy cycle structure were
destroyed by the approach of Typhoon Zeke.
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Zhu et al. (2000)

e the rainfall in the mid
latitudes in front of the
westerly trough was
closely related to
moisture transport by
the strong
southeasterly flow in
the eastern periphery
of the typhoon, which
stretched the moisture
channel to the area in
front of the trough.




Interaction with southwesterly monsoon (moisture supply)
Chen et. al 2008

Li et. al 2005)
- e Cheng (2008) studied the relationship

between the moisture channel and rain:
in two groups of LTC. One group was
iiéomposed of five strong rainfall cases
sand the others of five weak rainfall case
Additionally, the vapor flux fields of the
groups were studied with data composi
analysis.
The results showed that LTC heavy rainf:
occurs when a strong vapor transport
channel is present with weak rainfall

—40 T ; T T T ) 7 i
—=4G =30 —20 —10 © 10 20 30 40 —40 7 Y ;i
—40 —30 —20 —10 O

10 20 30 40

30N

30N

@ ®) A occurring in the absence of such a
¥ channel In another study by Li et al. (2C
. . ’ numerical simulations of Typhoon Bilis

n T 0 .

> o (0010) showed that rainfall would be
= - 5}}//@,0 b significantly reduced from the control
- 7 i\ s simulation if the moisture transport was
> (_-' & 100
i cut.

O oE 1ot 14 iier iTst iZor 1o7F COMioE  T1E 1T4E 18T TeE iZor szt

Fig. 3. The accumulated rainfall distribution (>>100 mm) associated with Typhoon Bilis (0010) during 60 hrs
of simulation (from Li and Chen, 2005): (a) control simulation with moisture transport; (b) without moisture
transport.



Interaction of Typhoon Babs (1998) and the
Northeasterly Monsoon (Wu 2010)

24N A

23N A

22N A

120E 121E 122F

V\"QhL

Fig. 1 (a) Surface weather map (JMA) and (b) GMS-5 infrared satellite imagery
at 0000 UTC 25 Oct 1998. (c) and (d) As in (a) and (b) except at 0000 UTC 26
Oct 1998.
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When the radius of the bogus
vortex is reduced, the cold front
to the north migrates southward
in a faster pace than in the
control simulation, and rain rate
at the front also increases such
that total accumulated rainfall at
northern Taiwan is comparable
with that in the control simulation
but with shifted maximum
position.

9 Simulated 1&00 hPa wmd f|eld {one full wmd barb = 10 m s } and 12 h accumulated
t (a) E20_KF and (b) E20_small valid at 1200
> 25 Oct 1998. (c) and (d) As in (a) and (b) except valid at 0000 UTC 26 Oct 1998.

fall (contour interval of 50 mm) in experimgp



Comparison of rainfall in No-terrain, no-
Typhoon and control experiment

In the extreme case in which no bogus vorte
is implanted at all, rainfall is mainly
associated W|th evolution of the cold front
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Removal of the Taiwan terrain in one of the
sensitivity experiments results in

completely different rainfall distribution due to
the lack of the convection by orographic lifting,



reduce the relative vorticity at each individual
level between 1000-700-hPa (1000-300-hPa)
for experiment E20_M1 (E20_M2) in the
model initial condition at 0000 UTC 23 Oct to
half of the original value inside a circular
domain with a radius

of 600 km
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Fig. 12 Simulated 925 hPa streamllne geopotentlal helght (dashed line, m) an
divergence (shaded, contour interval is 2x10# s1) in experiment E20_M1 at (a]

1800 UTC 24 Oct and (b) 0000 UTC 26 Qct. (c) and (d) As in (a) and (b) excer
fAr avinarimant E20 DO



Northeasterly
monsoon flow

Circulation of typhoon

Fig. 13 Schematic diagram of the rainfall mechanisms associated with the
monsoon mode and the topographic mode, as a response to the
interaction among the typhoon circul&tion, northeasterly monsoon flow,
and terrain of Taiwan (contour interval of 500 m) .



Radar Observations of Intense Orographic
Precipitation Associated with
wre i e T pRGON Xangsane (2000)

a ML Da-Tun {widar, higher Darriar)

Belation of precipitation to low-level upstream
oncoming flow
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Fi1G. 11. Mean vertical structures of reflectivity (dBZ.
shading) along D1 in Fig. 9b, obtained from different
intervals of low-level oncoming flow component along
the section. Shown is the oncoming flow component at
(a) 10215, (b) 15-20, (c) 20-25, (d) 25-20, and (e) 30-35
m s~ L. For clarity, regions of reflectivity greater than 40
dBZ are also contoured with a 1-dB.Z interval. Shading
and arrow in lower portion of each panel indicate to-
pography and mountain peak along the section, respec-
tively. The windward (i.e.. northern) side is on the left
of each panel.

low-level oncoming flow intensified, and the
precipitation exhibited a deeper, wider extent
and stronger

intensity at stronger oncoming flow regimes
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Rainfall Reinforcement Associated with
Landfalling Tropical Cyclones in Mainland China
(Dong et. al. 2010)

the rainfall reinforcement of a landfalling tropical cyclone (RRLTC)

is realized whenever the rainfall increment between two time gy oty

levels equals or exceeds a threshold rainfall amount.
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FIG. 1: Interannual variability of RRLTC occumence frequency and intensity from
The JGs. thiggering rainfall reinforcement
account for 9.7% of the total number of TCs
that make landfall on mainland China
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FIG. 5 Relationship between RRLTC occurrence frequency/intensity and TC
category at landfall. The standard deviations of intensity for TD, TS, STS. and

TY are 30.0, 47.4, 36.0 and 41 .6mm/24h, respectively.

m— frequency == intensity

n
G

,_.
=
=

o
=1

50
A
it
20
i
a

sity(mm/24h)

frequency(%)
o
L=

=
=]
inten

ke
a o
u
|

TD TS 5Ts

TC instantaneous intensity

FIG. 6: Relationship between RRLTC occurrence frequency/intensity and TC
category at the time of RRLTC occurrence. The standard deviations of intensity

for TD, TS, and STS are 42 4, 12 4 and 14 4mm/24h, respectively.



Rainfall Reinforcement Associated with
Landfalling Tropical Cyclones in Mainland China
(Dong et. al. 2010)

attributed to the interaction between westerly
troughs and tropical cyclone. This is the way
for remnant to gain the baroclinic energy from
the mid-latitude trough

Rainfall reinforcement for the TCs with a
westward track is mainly due to the
interaction between monsoon surge cloud
clusters and tropical cyclone. to TCs gain
moisture and latent heat.

FIG. 4: Distribution of frequency of all TCs with rainfall reinforcement over land
(unit: %o, the thick solid lines with arrows display the two categories of
northward and westward tracks represented by T1 and T2, respectively. The dark

and light gray shading respectively denotes Fujian and Zhejiang province)



Rainfall Reinforcement Associated with
Landfalling Tropical Cyclones in Mainland China
(Dong et. al. 2010)
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FIG. 17: Monscon (unit- m s~) variation during July 2006. The wind speed is an area
mean of total wind over the northern South China Sea (105-120E. 10-20N) at
850hPa. Open arrows with label 51 and 52 respectively denote monsoon surges

during Bilis {0604) and Kamei (0605) affecting China.
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