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FOREWORD

The United Nations 
Economic and 
Social Commission 

for Asia (ESCAP)/
World Meteorological 
Organization (WMO) 
Typhoon Committee 
(TC) has been working 
to reduce the damages 
caused by tropical cyclone 
disasters to the lives 

and property of people in the Asia-Pacific region 
through its efforts in four areas: meteorology, 
hydrology, disaster prevention and mitigation, 
and education and training, helping achieve the 
goals set in such global agendas as the Sendai 
Framework for Disaster Risk Reduction 2015-
2030 and the 2030 Agenda for Sustainable 
Development.

The impact of climate change on typhoons is 
receiving increasing attention from scientific 
community, public, and policy makers. The 
projection by the Intergovernmental Panel on 
Climate Change (IPCC) for the 21st century 
suggests that global tropical cyclones are likely 
to decrease or remain the same in frequency 
but increase in average wind speed and 
precipitation rate. The Typhoon Committee, 
a regional intergovernmental organization for 
typhoon prevention and mitigation in Asia-Pacific, 
attaches great importance to the issue of typhoon 
in a changing climate. TC began to develop the 
Assessment Reports on Typhoon in a Changing 
Climate in the Asia-Pacific Region in 2008, with 
two outputs (TC-AR1, TC-AR2) released in 2010 
and 2012 respectively, which have attracted 
widespread attention from the international 
community. Their main findings or conclusions 
were cited in the Fifth Assessment Report of IPCC 
(IPCC-AR5, released in 2013).

Based on the two previous assessment reports, 
the Typhoon Committee has continued to devote 
great research efforts to such areas as the 
homogenization of typhoon observations, typhoon 
positioning and intensity estimation techniques, 
the relationship between typhoon climate and 
global change, and numerical simulation of future 
trends, with significant progress made. It is our 

great pleasure to release the Third Assessment 
Report (TC-AR3).

TC-AR3, an update of the previous two reports, 
includes observational facts about typhoon 
frequency, intensity, track, precipitation and 
storm surge in the region, trends in the context 
of global warming, possible impact on Members 
of the Typhoon Committee, uncertainty analysis 
of the results, and recommendations for related 
follow-up research. Thus this is a product that will 
contribute to our understanding of typhoon in a 
changing climate and the continuous improvement 
of the long-term typhoon resilience strategy.

On the occasion of its release, I would like to 
express, on behalf of the UNESCAP/WMO 
Typhoon Committee, my sincere gratitude and 
respect to all the members in the assessment 
expert team for their outstanding, hard and 
voluntary work. At the same time, my appreciation 
goes to ESCAP, WMO, Secretariat of the Typhoon 
Committee and its Members for their strong 
support!

 

UNESCAP/WMO Typhoon Committee
Chair:   Mr. Yu Wong     

December 2019
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PREFACE

In recent years, the occurrence of tropical 
cyclone anomalies around the world has 
triggered a constant concern about the 

climate characteristics of tropical cyclones and 
their relationship to global warming. As the 
official organization in the Asia-Pacific region for 
international collaboration for disaster prevention 
and reduction, the ESCAP/WMO Typhoon 
Committee attaches great importance to typhoon 
climate change, and the Working Group on 
Meteorology has taken it as one of its key projects 
since 2008. The Working Group on Meteorology 
started the compilation and editing of the 
assessment report (series) on climate change on 
Asia-Pacific typhoons. Two Assessment Reports 
(TC-AR1, TC-AR2) were published in 2010 and 
2012, respectively and received wide attention 
from the international community. The main 
conclusion was quoted in the Fifth Assessment 
Report published by IPCC in 2013 (IPCC-AR5).

The detection and prediction of tropical cyclone 
climate change in Northwest Pacific is challenging 
with uncertainty due to the lack of long-sequence 
observations, limitations on tropical cyclone 
intensity analysis, and the heterogeneity of best-
track datasets in the region. On basis of TC-
AR2 and IPCC-AR5, a lot of research work has 
been carried out by international and Asia-Pacific 
typhoon researchers on the long-term sequence 
of tropical cyclones, the homogeneity of different 
best-track datasets, the relationship between 
global warming and tropical cyclone climate 
characteristics and future trends of numerical 
simulation. Significant progress has been 
achieved.

In view of this, the ESCAP/WMO Typhoon 
Committee initiated the research and writing of 
the Third Assessment Report (TC-AR3) in 2014 
(the 46th session in Thailand) and served as 
the annual key project of the Working Group on 
Meteorology. A team of experts from China, Japan, 
Republic of Korea, Hong Kong and United States 
of America was set up, with experts from the 
Macau Meteorological Bureau served as project 
coordinator. After several years of systematic 
and careful analysis and evaluation based on 
the latest research results of global warming on 
tropical cyclones in the Asia-Pacific region, the 

expert term completed the first draft of TC-AR3 
and an expert group meeting was held in 2018. 
The TC-AR3 was finalized and published in 2019.

TC-AR3 is an update of the previous two reports. 
It contains detailed observations on the frequency 
of tropical cyclones, intensity, movement, 
precipitation and storm surge in the region, trends 
under the background of global change, and 
possible impacts to the ESCAP/WMO Typhoon 
Committee Members. In addition, discussion of 
the uncertainty of the evaluation results and the 
follow-up related research work recommendations 
is also included. It is believed that the report 
will promote understanding in typhoon climate 
change and improvement in long-term strategies 
for typhoon disaster reduction.

On this occasion and on behalf of the ESCAP/
WMO Typhoon Committee Working Group on 
Meteorology, I would like to express my gratitude 
to all the experts in the expert team for their 
excellent, hard and unpaid work, and ESCAP, 
WMO, Typhoon Committee and the Secretariat 
and all Members for the strong support!

‘

Working Group on Meteorology 
ESCAP/WMO Typhoon Committee

Chair: Dr. Xiaotu Lei
Shanghai Typhoon Institute of CMA

December 2019
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EXECUTIVE SUMMARY

The report assesses the current state of the 
science on the relationship between climate 
change and tropical cyclone (TC) activity in 

the western North Pacific (WNP) basin.  

Two central questions that are addressed through 
the report are the following:

• Is there a detectable human influence on any 
TC metric in the Typhoon Committee region?

• What changes in TC activity are expected 
in the region over the 21st century as a 
consequence of a 2oC global climate warming 
scenario?

Past changes 

(a) Summary of trends in WNP TC activity

With data updated to 2017, four best track 
datasets continue to show significant interdecadal 
variations in basin wide TC frequency and 
intensity in the WNP.  While most of the best track 
datasets depict a decreasing trend in basin wide 
TC frequency, the observed trend and its statistical 
significance are still highly dependent on the best 
track dataset used, the analysis period chosen, 
and other analysis details.

For TC intensity, there was encouraging research 
progress in improving the consensus between 
best track datasets and increasing use of a 
homogenized intensity dataset (ADT-HURSAT) 
to investigate intensity trends.  Increases in the 
number and intensification rate for intense TCs, 
such as Cat. 4-5s, in the WNP since mid-1980s, 
were reported by a number of studies using various 
statistical methods to reduce the uncertainty in 
intensity assessment among best track datasets.  
However, comparison of ADT-HURSAT and best 
track datasets intensity trends suggests there may 
be remaining homogeneity issues in the best track 
datasets.  Moreover, spatial and cluster analysis 
of TC intensity depicted substantially different 
trends in various sub-regions of the WNP.  

A statistically significant northwestward shift in TC 
tracks and poleward shift in the average latitude 

where TCs reach their peak intensity in the WNP 
since the 1980s have also been reported.  The 
prevailing track changes also resulted in an 
increase in the exposure to TC occurrence and 
landfall in some regions, including East China, 
Japan, and the Korean Peninsula in recent 
decades. Moreover, a statistically significant 
decreasing trend of TC translation speed in the 
WNP from 1949-2016 was reported.  Poleward-
shifting trends of storm surges in the WNP after 
the 1980s were also reported in a study using 
observations and model simulated storm surge 
data. Global reanalysis of storm surges and 
extreme sea levels also suggested that China, 
Japan and Vietnam in the WNP are among the 
10 most-exposed countries to a 1 in 100-year 
coastal flood. It is also noted that one study 
indicated no statistically significant trend in 50-
year return period TC-induced storm surges in the 
WNP.

TC rainfall rate trends are significantly influenced 
by changes in TC frequency, rainfall rate, 
translation speed and prevailing track and may 
vary from one region to another.  Some available 
studies on observed TC rainfall in the region 
reported increasing trends in TC rainfall intensity 
in several regions, including southeastern China, 
Japan, the Philippines and central Vietnam.

Frequencies of landfalling and affecting TCs 
show no statistically significant trend for China, 
the vicinity of Hong Kong, China and Macao, 
China, Japan (TC or above), the Philippines, and 
the Korean Peninsula. Landfalling TC intensities 
over Japan and east China, have a statistically 
significantly increase, but those for south China, 
the Philippines and Vietnam have not changed 
significantly.

(b) Detection and attribution of TC changes 

Progresses have been made in the detection 
and attribution aspects based on the assessment 
approach detailed in Knutson et al. (2019a).  
We first used the conventional perspective of 
avoiding Type I error (i.e., avoiding overstating 
anthropogenic influence).  Using this approach, 
the strongest case for a detectable change in 
TC activity in the WNP is the observed poleward 
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migration of the latitude of lifetime maximum 
intensity (LLMI). There is low-to-medium 
confidence that the observed poleward migration 
of LLMI is detectable compared with expected 
the significant natural variability of TC activity in 
this basin. However, there is only low confidence 
that anthropogenic forcing contributed to this 
poleward shift. There is low confidence that any 
other observed TC change in the WNP is either 
detectable or attributable to anthropogenic forcing.   

Alternatively, from the perspective of reducing Type 
II errors (i.e., avoiding understating anthropogenic 
influence), some additional tentative TC detection 
and/or attribution statements can be made.  We 
caution that these may have potential for being 
false alarms (i.e., overstating anthropogenic 
influence), but they nonetheless may be useful 
indicators of evolving risk. With this caveat, the 
balance of evidence suggests i) a detectable 
anthropogenic contribution to the observed 
poleward migration of the latitude of maximum 
intensity in the WNP; and ii) an anthropogenic 
influence (but without detection) on the unusually 
active TC season in the WNP in 2015. 

While we are not aware that any TC climate 
change signal has been convincingly detected 
to date in sea level extremes data in the WNP 
basin, a widespread worsening of storm surge 
levels is believed to be occurring due to sea level 
rise associated with anthropogenic warming, 
assuming all other factors equal.    

There are a number of reasons for the relatively 
low confidence in detection and attribution of 
TC changes in the basin.  These include data 
homogeneity concerns (observation limitations), 
the small signal to noise ratio for expected 
anthropogenic changes, and uncertainties in 
estimating both the background natural variability 
levels and the response of TC activity to historical 
forcing agents.  

Future projections of TC activity

The results of this assessment on the projections 
of TC activity in the WNP are generally consistent 

with those published in TCAR 2012 and the 
global assessment conducted by the WMO Task 
Team on Tropical Cyclones and Climate Change 
(Knutson et al. 2019b).  

For projections of TC genesis/frequency, recent 
studies using higher resolution dynamical models 
mostly suggested a reduction of TC numbers, but an 
increase in the proportion of very intense TCs (Cat. 
4-5) over the WNP in the future.  However, there 
are still individual studies projecting an increase 
in TC frequency.  Most TC intensity projection 
studies agree on an increase in intensity of WNP 
TCs in response to a 2oC global anthropogenic 
warming scenario.  All available projections for TC 
related precipitation also indicate an increase in 
TC related precipitation rate in a warmer climate.  
Anthropogenic warming may lead to potential 
changes in TC prevailing tracks, although details 
vary among studies.  Climate models continue to 
predict future increases in sea level and, together 
with the projected increase in TC intensity, this will 
likely contribute towards increased storm surge 
and coastal inundation risk.  Some studies also 
suggested a possible decrease in storm numbers 
in the WNP in the future, which could contribute 
toward decreasing surge risk, assuming all other 
factors equal.  The most confident aspect of 
change in storm inundation risk comes from the 
highly confident expectation of further sea level 
rise, which would exacerbate storm inundation 
risk, assuming all other factors equal.  

This assessment also attempts to quantitatively 
estimate the projected changes of key TC 
metrics (TC frequency, intensity, frequency of 
very intense TCs, proportion of very intense TCs 
and precipitation rates) expected under a 2oC 
anthropogenic global warming scenario for the 
WNP by utilizing the approach and relevant data 
from the assessment of Knutson et al. (2019b) 
and other study findings for this region.  The 
quantitative estimation of the projected change of 
these five metrics for the WNP are summarized 
as follows :

(a) TC Frequency
The median projected change of TC frequency is 
about – 10% with a 10th – 90th percentile range of 
-26 % to +11%.  
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(b) TC Intensity
The median projected change of TC intensity is 
about +5%, with a 10th – 90th percentile range of 
+2% to +9%, and with a large majority of models 
projecting an increase in the TC intensity.

(c) Frequency and proportion of very intense TCs 
(Cat. 4-5)
While the median projected change of about 0 
% and a rather large 10th – 90th percentile range 
of -24% to +50% indicate no clear tendency 
of change in very intense TC frequency, the 
proportion of very intense TCs shows a clear 
tendency for an increase, with a median projected 
change of about + 10%.  

(d) TC precipitation 
All projections are positive, indicating a clear 
tendency for an increase in TC precipitation rates, 
with a median change of about + 17%, and a 10th 
– 90th percentile range of +6 % to +24%.



xvi
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CHAPTER 1  
Introduction

Tropical cyclones (TCs) rank among of 
the most destructive natural disasters on 
Earth. The western North Pacific (WNP) 

is the most active TC basin in the world, with an 
average of about 26 named TCs affecting the 
region each year.  Among the notably destructive 
TCs occurring in the ESCAP/WMO Typhoon 
Committee region1 in recent years were Washi 
in 2011, Haiyan in 2013, Rammasun in 2014, 
Soudelor in 2015, Nepartak and Meranti in 2016, 
Hato in 2017 and Jebi and Mangkhut in 2018.  
Against the background of global climate change, 
possible changes in TC activity and the associated 
impacts are topics of concern (Landsea et al., 
2006; IPCC, 2013; Walsh et al., 2016).  For the 
WNP, the Second Assessment Report (SAR) 
on the influence of climate change on tropical 
cyclones in the Typhoon Committee region (Ying 
et al., 2012), concluded that while detection of 
any long term trends in TC activity in the WNP 
is still rather uncertain due to large inter-annual 
and inter-decadal variations and inter-agency 
inconsistency in the best track dataset, most of the 
available modeling studies projected an increase 
in TC intensity and precipitation rates in the WNP 
basin over the 21st century.  

Since the publication of the SAR of Typhoon 
Committee in 2012, Members of Typhoon 
Committee and various research groups around 
the world have continued to investigate the 
connections between climate change and TCs, 
including homogenization of best track datasets, 
attribution and detection studies, model projections, 

1 The ESCAP/WMO Typhoon Committee is an intergovernmental 
body established in 1968 under the auspices of the United 
Nations Economic and Social Commission for Asia and the 
Pacific (ESCAP) and the World Meteorological Organization 
(WMO).  The Committee’s purpose is to promote and 
coordinate planning and implementation measures required 
for minimizing the loss of life and material damage caused by 
typhoons.  It is currently composed of 14 Members:  Cambodia; 
China; Democratic People’s Republic of Korea; Hong Kong, 
China; Japan; Lao People’s Democratic Republic; Macao, 
China; Malaysia; the Philippines; Republic of Korea; Singapore; 
Thailand; United States of America; and Viet Nam.

and impact assessments as recommended by the 
Typhoon Committee expert team in 2012 (Ying et 
al., 2012).  In 2014, the Typhoon Committee at its 
46th Session in Bangkok, Thailand commissioned 
an expert team to update the SAR with the present 
assessment--a third assessment report (TAR)--for 
the Typhoon Committee Members’ reference.  

The TAR reviews the latest scientific publications 
since 2012 and provides an updated assessment of 
the current state of the science on the relationship 
between climate change and TC activity in the 
WNP basin.  Similar to the SAR, the focus will 
be on reviewing studies of past trends and future 
projections of TC activity in the WNP in order to 
identify possible influences of anthropogenic 
climate change on TC activity and impacts in the 
region, including storm surge risk.  

In the WNP, four TC best track datasets are 
available, prepared respectively by China 
Meteorological Administration (CMA), Hong Kong 
Observatory (HKO), Joint Typhoon Warning 
Centre (JTWC) and RSMC-Tokyo and Regional 
Specialized Meteorological Centre Tokyo (RSMC-
Tokyo).  These four datasets are commonly used 
by various research groups in TC analysis.  In 
addition to these four datasets, Kossin et al. 
(2007, 2013) re-analyzed satellite imagery and 
constructed the Advanced Dvorak Technique–
Hurricane Satellite dataset (ADT-HURSAT) for the 
purpose of having a more homogeneous satellite-
based estimation of TC intensity for climate change 
analysis in all ocean basins.  The ADT-HURSAT 
data, covering TCs from 1978 to 2009, was also 
used by some research groups for comparison 
studies to conventional best track data.  

Different averaging periods for maximum 
sustained wind and TC classification schemes are 
adopted by the above four agencies in the WNP.  
Moreover, some researchers also made use, in the 
WNP basin, of the five Category (1-5) hurricane 
intensity categorization used in the eastern North 
Pacific and North Atlantic basins in studying the 
TC activity in the WNP.  For reference, Annex I 
provides the comparison of the TC classifications 
used by CMA, RSMC-Tokyo, HKO, and JTWC as 
well as the Hurricane Categories 1-5 system. 
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In this report Chapter 2 will provide an updated 
assessment of past observed changes in TC 
activities and characteristics (including frequency, 
intensity metrics, prevailing tracks, rainfall, and 
storm surge).  Chapter 3 will examine the latest 
findings on detection and attribution of changes 
of TC activities.  Chapter 4 will focus on the TC 
impacts and present the results collected from the 
survey of the observed trend behavior of TC activity 
and related impacts among Typhoon Committee 
Members.  Chapter 5 will update the 21st century 
TC activity projections.  Uncertainties will be 
discussed in Chapter 6, and recommendations for 
future work will be given in Chapter 7.  

While this report does not provide an exhaustive 
literature review of all studies on these topics, we 
have attempted to include and discuss at least the 
key references on which our assessments have 
been based.
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Observed Tropical Cyclone Activity and 
Characteristics

2.1  Tropical Cyclone Frequency

Studies of the variability and trends in tropical 
cyclone frequency in the WNP basin are 
reviewed in this section.  The analysis of 

long-term TC frequency variations depicted in 
the previous assessment reports and based on 
the four datasets (RSMC-Tokyo, CMA, HKO, and 
JTWC), are also updated for readers’ reference 
(Lee et al., 2010; Ying et al., 2012).

Similar to results from the first and second 
assessment reports, there is a statistically 
significant decreasing trend in annual counts of 
storms of at least tropical storm intensity or at least 
typhoon intensity, according to the CMA (1949–
2017) and HKO (1961–2017) data sets.  However, 
no statistically significant trends are found for the 
JTWC (1945–2016) or RSMC-Tokyo (1951–2017) 
data sets (Table 2.1).  Table 2.2 shows that, using 
a common period across the data sets (1977–
2017), all datasets show a decline in tropical 
storm/typhoon (and above) counts, although the 
trend is not statistically significant at the 5% level 
for most of the datasets.  

Regarding decadal changes, Choi et al. (2015) 
studied the interdecadal variations in typhoons 
(categories 1-3) frequency over the WNP during 
the period of 1979-2011 based on the datasets of 
HKO, JTWC, RSMC-Tokyo, CMA and IBTrACS.  
They noted that the typhoon frequency has 
decreased since mid-1990s.  Over the South China 
Sea, by using the JTWC data from 1979-2010, Li 
and Zhou (2014) concluded that there were two 
inactive periods (1979-1993 and 2003-2010) in 
the summertime (June-August) TC frequency in 
that region.  Analyzing the IBTrACS dataset, Hu et 
al. (2018) reported that there was a step-by-step 
interdecadal decrease in TC genesis frequency in 
the WNP from 1960 to 2014 in accordance with 
the phase of the Interdecadal Pacific Oscillation 
(IPO).  They also reported that vertical wind 
shear (especially the zonal wind shear) has been 

the most important environmental parameter 
responsible for the interdecadal TC changes, and 
that the interdecadal change of vertical wind shear 
has been caused by SST and associated rainfall 
pattern changes across the Indo-Pacific Ocean.     

(a) storms of tropical storm intensity and above

(b) storms of typhoon intensity

Figure 2.1  Annual storm counts in western North Pacific 
from 1945-2017 based on the categories assigned according 
to reported maximum sustained winds converted into 10-min 
means.
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*  The annual numbers from 1951 to 1976 are according to 
RSMC-Tokyo’s assignment of TS category although the MSW 
data are not available. 
**  Period from 1977 to 2017 as MSW data in RSMC-Tokyo 
dataset only available since 1977. 

Table 2.1 Trends in annual numbers of TCs in 
WNP based on different datasets for all available 
data up to 2017. The trends are estimated by 
linear least square regression. Results in bold 
indicate trends that are statistically significant at 
the 5 % level.

Datasets Data 
Period

Original intensity

All TC
(tropical 
storm or 
above)

Typhoons

CMA 1949-2017 -0.75/
decade

-0.97/
decade

JTWC 1945-2017 +0.16/
decade

-0.28/
decade

RSMC-
Tokyo 1951-2017 -0.44/

decade
-0.76/

decade**

HKO 1961-2017 -1.33/
decade

-0.71/
decade

Datasets Data 
Period

Adjusted Intensity 
(10-min mean)

All TC
(tropical 
storm or 
above)

Typhoons

CMA 1949-2017 -1.07/
decade

-1.15/
decade

JTWC 1945-2017 -0.16/
decade

-0.42/
decade

RSMC-
Tokyo 1951-2017 -0.44/

decade
-0.76/

decade**

HKO 1961-2017 -1.33/
decade

-0.71/
decade

Table 2.2 Trends in annual numbers of TCs in 
WNP based on different datasets from 1977 to 
2017. The trends are estimated by linear least 
square regression.  Results in bold indicate trends 
that are statistically significant at the 5 % level.

2.2  Tropical Cyclone Intensity and 
Integrated Storm Activity Metrics 

Various research groups have adopted different 
approaches to reduce the uncertainty in TC 
intensity trend analysis due to wind speed 
conversion and intensity assessment methods.  
Kang and Elsner (2012) used a quantile method 

Datasets Data 
Period

Original intensity
All TC

(tropical 
storm or 
above)

Typhoons

CMA 1977-2017 -0.86/
decade

-0.59/
decade

JTWC 1977-2017 -0.63/
decade

-0.42/
decade

RSMC-
Tokyo 1977-2017 -0.81/

decade
-0.76/

decade

HKO 1977-2017 -0.91/
decade

-0.60/
decade

Datasets Data 
Period

Adjusted intensity 
(10-min mean)

All TC
(tropical 
storm or 
above)

Typhoons

CMA 1977-2017 -1.54/
decade

-0.86/
decade

JTWC 1977-2017 -1.03/
decade

-0.41/
decade

RSMC-
Tokyo 1977-2017 -0.81/

decade
-0.76/

decade

HKO 1977-2017 -0.91/
decade

-0.60/
decade
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Figure 2.2 Trends in the quantiles of LMI in WNP, limited to storms that achieve typhoon strength (LMI >= 33 m s-1) over the 
period 1982-2009 based on ADT-HURSAT (top) and Best-Track (bottom) records (Figure 10 of Kossin et al. (2013) © American 
Meteorological Society. Used with permission). 

Their numerical simulation suggested there has 
been statistically significant decadal (12-18 years) 
variability of Cat. 4-5 TCs in the WNP and that 
changing TC tracks is the most important factor 
for decadal variations.  The active phase of Cat. 
4-5 TC occurrence is closely associated with an 
eastward shift in TC formation locations, which 
allows TCs to follow a longer sea track, favoring 
the development of Cat. 4-5 TCs.

Using the best track dataset (IBTrACS) and the 
ADT-HURSAT dataset over 1982-2009, Kossin et 
al. (2013) applied the quantile regression method 
to examine trends in the quantiles of lifetime 
maximum intensity (LMI), considering only storms 
whose LMI was 65 knots or above.  They reported 
that, for the best track data in the WNP, significant 
positive trends are found in the mean LMI and 
in a range of quantiles.  However, this result is 
not supported by the ADT-HURSAT data which 
shows the highest quantile exhibiting a marginally 
significant negative trend.  As pointed out in their 
study, the 28-year length of the homogenized 
record of ADT-HURSAT places strong constraints 
on the interpretation of the observed trends. 

to identify a consensus trend of TC activity for 
the RSMC-Tokyo and JTWC datasets from 1977 
to 2010.  By using the upper (strongest) 45% of 
the TCs as a threshold, they found an improved 
consensus between JTWC and RSMC-Tokyo 
dataset results when compared to traditional 
methods.  The most reliable consensus is 
considered to be between 1984 and 2010, during 
which statistically significant decreasing trend in 
the frequency and increasing trend in intensity 
are seen, implying fewer but stronger TCs in the 
WNP during the study period.   Moreover, Zhao 
and Wu (2014) examined the JTWC dataset and 
applied a downward adjustment to the maximum 
TC intensities prior to 1973.  Then, by using a 
Bayesian change-point analysis, they detected 
a statistically significant shift in the frequency of 
Cat.4-5 TCs in the WNP in 1987 with the average 
number of Cat. 4-5 TCs increasing from 5.1 
per year during their first epoch (1965-1986) to 
7.2 per year during their second epoch (1987-
2010).  Zhao et al. (2014) simulated Cat. 4-5 TC 
frequency in a TC intensity model by allowing all 
of the observed TCs in the JTWC dataset to move 
along the observed TC tracks for 1948-2010.  
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Kishtawal et al. (2012) used the IBTrACS (v03r03) 
dataset to assess the trends of TC intensification 
rate for TCs with peak intensity exceeding 80 
knots (10-minute mean) in different basins during 
the satellite era (1986-2010).  Their results 
suggested that, in the WNP, there is a statistically 
significant positive trend for the intensification rate 
from tropical storm to typhoon stage, while the 
nominally positive trend from typhoon intensity to 
peak intensity is not statistically significant.

Using an “Anthropogenic Climate Change Index 
(ACCI)” defined by the difference between 
global surface temperatures from climate 
model ensemble simulations with and without 
anthropogenic climate forcing agents included, 
Holland and Bruyère (2014) reported substantial 
relationships between ACCI and the observed 
proportion of very intense TCs (Saffir-Simpson 
categories 4 and 5) in the IBTrACS data from 
1975 to 2010.  While no change in global cyclone 
frequency or average intensity was found, they 
concluded there has been a substantial increase 
in the proportion of hurricanes/typhoons reaching 
category 4-5 levels, both globally and individually 
in all basins except for the eastern North 
Pacific.  They also confirmed that an increase in 
proportion of category 4-5 storms is seen using 
the homogenized satellite-derived intensity data 
of Kossin et al. (2013), which begins in 1982.

Concerning spatial variations, Park et al. (2013) 
investigated the spatial distribution of trends in TC 
intensity using five TC datasets (RSMC-Tokyo, 
HKO, CMA, JTWC and the ADT-HURSAT), 
generally over 1977-2010, and using an 
overlapping latitude-longitude gridding method.  
All TC datasets depicted a spatially inhomogenous 
trend with weakening over ocean areas east of the 
Philippines (TP) and strengthening in the southern 
Japan and its southeastern ocean (SJ) regions.  
More in-depth analysis also suggested that the 
increasing intensification rate around the center of 
the WNP could mostly account for the increasing 
intensity over the SJ, while both the intensification 
rate and local genesis frequency affect the intensity 
trend in TP.  Cha et al. (2014) reported that while 
there is a decrease in the overall number of TCs 
that passed within the vicinity of Republic of Korea 
from 2001-2010, a statistically significant increase 

in the number of strong typhoons (maximum 
wind speed of 44 ms-1 or above) has been found. 
Park et al. (2014) analyzed five TC datasets from 
1977-2010 and revealed that there has been 
a statistically significant shift in the maximum 
intensity of TCs (maximum sustained wind speed 
over 17ms-1) close to East Asian coastlines during 
July-November, resulting in an increase in the 
intensity of TCs making landfall over East China, 
Japan and the Korean Peninsula. 

Mei and Xie (2016) applied cluster analysis to 
examine the intensification of landfalling typhoons 
(1-minute maximum sustained wind of 33 ms-1 
or above) over the WNP from 1977-2013 using 
the JTWC and RSMC-Tokyo datasets.  In this 
study, the RSMC-Tokyo dataset was adjusted for 
the difference in averaging period and changes 
in conversion methods during the study period.  
The adjustment greatly improved the consistency 
and correlation between the two datasets.  The 
study stratified the typhoon tracks into four distinct 
clusters of which Clusters 1 and 2 contribute to 
about 85% of the landfalling rate in the basin.  
Cluster 1 typhoons form east of the Philippines, 
track north to northwestwards and affect East 
Asia.  Cluster 2 typhoons form slightly to the west 
of Cluster 1 and over the South China Sea, track 
west to northwest and affect Southeast Asia and 
southern China.  The analysis of Cluster 1 storms 
suggested that the annual mean values of lifetime 
peak intensity has increased by about 15% 
during 1977-2013 with a factor of four increase 
in the number Cat. 4-5 typhoons.  For Cluster 2 
typhoons, the average intensity increased about 
12% and the number of Cat.4-5 typhoons doubled 
over the 37-year period.  The study attributed the 
observed intensification of landfalling typhoons 
since late 1970s mainly to the strengthening of 
intensification rates which they inferred was due 
in turn to enhanced SST warming in a band off the 
coast of East and Southeast Asia.
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Analyzing rapid intensification, Zhao et al. (2018) 
reported a statistically significant increase in 
the proportion of tropical cyclones undergoing 
rapid intensification at least once during their 
lifetime (RITCs) over the WNP during 1998-2015 
compared to the period 1979-1997.  The observed 
change is composed of the combined effect of a 
significant decrease in TC counts and unchanged 
RITC frequency since 1998.

Lin and Chen (2015) analyzed trends in a Power 
Dissipation Index (PDI) for the WNP over the 
period 1992-2012 using the JTWC dataset.  They 
reported that the three main PDI contributing 
factors (frequency, duration and intensity) 
had made variable-signed contributions to the 

Figure 2.3  Linear trends (m s-1 per decade) of TC intensity during the period 1977-2010.  Contours indicate the average of five TC 
datasets; red and blue colors indicate the number of TC datasets for which changes are significant with positive and negative 
signs at the 90% confidence level; dots indicate regions where all five TC datasets show the same sign (Figure 1 of Park et al. 
(2013) © American Meteorological Society. Used with permission).

observed PDI.  Decreases in TC frequency and 
duration outweighed the positive contribution from 
increasing TC intensity, resulting in a decreasing 
trend in PDI during the study period.  Li et al. (2017) 
investigated changes in the destructiveness of 
landfalling TCs over China during 1975–2014 
using the TC datasets of the four agencies.  They 
found that TCs making landfall over East China 
have tended to be more destructive in recent 
decades, with a statistically significant increase in 
PDI after landfall.  Further analysis also revealed 
that such an increase in the PDI of TCs landfalling 
over East China is associated with concomitant 
enhancements in landfall frequency and intensity 
over East China.  In contrast, changes in the 
PDI of TCs making landfall over South China are 
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less apparent.  Composite analysis suggested 
that the reduction in TC occurrence over South 
China tends to offset the positive influence of the 
intensity and the nonlinear term.

Figure 2.4 Tracks and intensity evolution of typhoons in Clusters 1 (left) and 2 (right). a, Tracks of typhoons from the JTWC 
data (JMA data show similar results). The colors indicate intensity levels of tropical depression (grey), tropical storm (green), 
categories 1 and 2 (orange), and categories 3 to 5 (red). b, Annual mean typhoon lifetime peak intensity and annual mean 
typhoon intensification rate as a function of year from the JTWC (black curve) and adjusted JMA (red curve) data. Thick dashed 
lines show linear trends during 1977–2013.  (Reprinted with permission from Springer Nature: Mei, W. and S.P. Xie, 2016 : 
Intensification of landfalling typhoons over the northwest Pacific since the late 1970s, Nature Geoscience, 9, 753–757, Copyright 
(2016))
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2.3  Prevailing Track and Tropical Cyclone 
Exposure

Zhao and Wu (2014) investigated the changes 
in the three climatological prevailing TC track 
patterns between the first epoch (1965-1986) 
and second epoch in (1987-2010), referred to 
as ID1 and ID2, respectively.  They reported a 
pronounced northwestward shift in TC tracks over 
the WNP during ID2 compared to ID1.  This shift 
in the prevailing tracks from ID1 to ID2 led to a 
statistically significant decrease in TC occurrence 
over the South China Sea and a statistically 
significant increase from the Philippine Sea to 
the eastern coast of China and in the western 
part of the WNP.  They suggested that while the 
observed inter-decadal shift in prevailing tracks 
mainly resulted from the combined effects of 
changes in large-scale steering flows and TC 
formation locations, they inferred that changes in 
steering flows plays a more important role than 
formation locations.  The spatial distribution of 
intensity trends shown by Park et al. (2014) also 
indicates that the TC occurrence has a statistically 
significant decrease over the South China Sea and 
the eastern subtropical area of the WNP, whereas 
it has a statistically increase significant changes 
over sea areas around Taiwan and marginally 
near the east coast of Japan. 

Kossin et al. (2016) analyzed TC exposure in the 
WNP using the four TC datasets (HKO, RSMC-
Tokyo, CMA and JTWC) for 1980-2013.  They 
found a poleward shift in the average latitude 
where TCs reach their peak intensity in the 
WNP.  The poleward migration in the basin has 
accompanied with a decrease in TC exposure 
in the region of the Philippines and South China 
Sea, including the Marianas, Philippines, Viet 
Nam and southern China, while TC exposure 
has increased in the East China Sea region, 
including Japan and Ryukyu Islands, Republic of 
Korea, and parts of East China.  Further analysis 
by Zhan and Wang (2017) suggested that this 
poleward migration over the WNP consists 
mainly of TCs with maximum sustained surface 
wind speed less than 33 ms-1 which they inferred 
was linked to the greater SST warming at higher 

latitudes associated with global warming and its 
associated changes in the large-scale circulation, 
which favors more TCs formation in the northern 
WNP and fewer but stronger TCs in the southern 
WNP over the past 30 years.  Knapp et al. (2018) 
also found that the region prone to experiencing 
storms with discernible eyes expanded poleward 
globally from 1982 to 2015.  Song and Klotzbach 
(2018) found that the poleward migration trends 
of Latitude of lifetime maximum intensity(LLMI) 
over the WNP vary on decadal timescales, with 
statistically nonsignificant and significant trends 
before and after 1980 respectively. Interdecadal 
fluctuations of TC genesis latitude as well as 
increases in latitudinal distance between genesis 
position and LLMI location are both responsible for 
the observed LLMI latitude trends. The former is 
linked to the Interdecadal Pacific Oscillation (IPO), 
which favors TCs forming in the northwestern 
(southeastern) quadrant of the WNP during 
negative (positive) IPO phases. The latter primarily 
results from a multidecadal warming of WNP 
sea surface temperature, which has increased 
the maximum potential intensity and apparently 
extended the region favorable for TC development 
to higher latitudes.  Liu and Chan (2019) also 
investigated the variations in the location of TC 
LLMI over the WNP and the possible implications 
for TC landfall intensities in various regions of 
East Asia.  They found that while the annual mean 
latitude of LMI of TCs (considering storms of at 
least tropical storm intensity) shows a statistically 
significant increasing trend during 1960–2016, 
but for intense typhoons (category 4–5) there 
is no significant trend but rather a pronounced 
interdecadal variation.  A comparison of the 
spatial patterns of LMI during the periods 1970–
1990 and 1991–2011 shows that the LMI location 
migrates from the southern to the northern part of 
East Asia from the first to the second period, with 
the frequency of intense typhoon landfalls and the 
average landfall intensities of the landfalling TCs 
increasing in Japan, the Korean Peninsula and 
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east China but decreasing in southern China.

Wu et al. (2015) analyzed the JTWC and ADT-
HURSAT datasets from 1979-2009 and inferred 
that the annual mean TC genesis location 
is generally controlled by the tropical upper 
tropospheric trough (TUTT) in the North Pacific.  
There has been a pronounced westward shift the 
TUTT since 1979 which suppressed TC genesis 
in the eastern portion (east of 145oE) of the WNP, 
resulting in a significant westward shift in the 
average TC genesis location during the study 
period. 

Kossin (2018) analyzed the annual mean global 
and regional translation speeds of tropical 
cyclones based on the IBTrACS, NHC and JTWC 
data as well as 2-minute Gridded Relief Data.  The 
study reported a statistically significant (about 
10% or 0.03 km hr-1 yr-1) slowdown of tropical 
cyclone translation speed globally over 1949-
2016.  Over the WNP, the study also reported 
a statistically significant decreasing trend in the 
TC translation speed, both for basin wide (about 
-20% or -0.07 km hr-1 yr-1) and over land (about 
-30% or -0.12 km hr-1 yr-1).  Moreover, a similar 
significant slowdown trend in translation speed is 
also observed for TCs at latitudes above 25oN.  
Chu et al. (2012) also reported that translation 
speeds of TCs as well as steering flows show 
a weakening trend over last 50 years in both 
the western portion of the WNP and northern 
South China Sea.  Similar reductions in mean 
translation speeds for landfalling TCs in East 
China during 1975 - 2014 was also reported by 
Li et al. (2017).  However, the robustness of the 
global decreasing trends in translation speed 
has been questioned by Moon et al. (2019) and 

Lanzante (2019), who suggest that the observed 
global trend reported by Kossin (2018) may be 
influenced by changes in observing capabilities 
over time as well as natural variability.

Cinco et al. (2016) reviewed the trends and 
impacts of TCs in the Philippines from 1951 to 
2013 and reported a decrease in the number of 
TCs landfalling in the Philippines, in particular 
in the last two decades of the study period.  
However, the number of extreme TCs (with 150 
km hr-1 maximum sustained winds or above) 
shows a slight (nonsignificant) increasing trend.  
Analyzing the JTWC dataset from 1945 to 2013, 
Takagi and Esteban (2016) reported a statistically 
significant increase in TC landfalling frequency in 
recent decades in the Leyte Island region of the 
Philippines (in the latitude zone between 10oN 
and 12oN). 

Regarding TC activity around Japan, Grossman 
et al. (2015) employed a GIS software to 
investigate the spatial and temporal variations 
of storm tracks around Japan based on RSMC-
Tokyo dataset in 1951-2011.  The study reported 
that the number of years with greater number of 
TCs (wind speed greater than 17ms-1) affecting 
the Japan Sea side and Pacific Coast side of 
Japan has increased since 1980.

Figure 2.5 Time series (olat decade-1) of annually averaged (ΦLMI) using best-track data from four WNP sources— JTWC, JMA, 
CMA, and HKO—and an ensemble of the four sources.  Shading shows 95% confidence bounds. (Figure 2 of Kossin et al. (2016) 
© American Meteorological Society. Used with permission) 
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2.4 Tropical cyclone related rainfall 

Using daily precipitation observations at 514 
meteorological stations during 1965 - 2009, Zhang 
et al. (2013) analyzed the trend and characteristics 
of TC rainfall in China.  The study revealed that the 
average rainfall per TC has significantly increased 
in Southeast China during the study period, in 
particular south of the Yangtze River east of 
110oE from July to September.  They suggested 
that this is in agreement with the reported shifts in 
prevailing TC tracks and increased survival time 
of landfalling TCs.  Chang et al. (2012) reported 
decreasing TC rainfall frequency and increasing 
TC rainfall intensity trends to the south of the 
China monsoon region from 1958 to 2010. Li 
and Zhou (2015) suggested that the frequency 
and intensity of TC rainfall over southeast China 
have undergone significant interdecadal changes 
during 1960 - 2009.  Li et al. (2015) pointed out that 
rainfall variability in Hong Kong is considerably 
affected by the TC rainfall which has a decreasing 
trend in both frequency and intensity in recent 
decades.

Bagtasa (2017) investigated TC-induced rainfall 
in the Philippines using RSMC-Tokyo TC dataset 
and a blended 64-year precipitation dataset which 
combines ground and satellite observations.  Four 
climate clusters were defined in this study and 
increasing trends in TC rain and TC percentage 
contribution were observed in all clusters since 
2000. 

Nguyen-Thi et al. (2012) investigated long-term 
trends in rainfall occurring during TCs in Vietnam 
from 1961-2008 using the JTWC dataset and 58 
meteorological stations.  They reported significant 
increasing trends of TC rainfall and TC heavy rain 
days at most stations along the central coastline.  
Wang et al. (2015) analyzed autumnal (October 
and November) precipitation in Vietnam and 
reported an intensification of precipitation over 
Central Vietnam since late 1990s.  They also 
inferred that such a change is linked to increased 
SST and a local increase in TC frequency over the 
adjacent sea.

2.5 Storm Surge

Needham and Keim (2015) reviewed TC-
generated storm surge data sources, 
observations, and impacts in various TC basins.  
They reported that observations for the WNP 
indicate the highest rate of low-magnitude 
surges, with the coast of China averaging 54 
surges (≥1 m) per decade, and rates were likely 
higher in the Philippines.  

By forcing the Global Tide and Surge Model with 
wind speed and atmospheric pressure from ERA 
global atmospheric reanalysis, Muis et al. (2015) 
developed the global reanalysis of storm surges 
and extreme sea levels (Global Tide and Surge 
Reanalysis (GTSR) data set).  GTSR covers the 
entire world’s coastline and consists of time series 
of tides and surges, and estimates of extreme sea 
levels.  They estimated that 1.3% of the global 
population is exposed to a 1 in 100-year flood.  In 
the WNP, China, Japan and Vietnam are among 
the 10 most exposed countries reported in the 
study.  

Figure 2.6 Time series of annual mean TC translation speed 
and their linear trends over land (solid line) and water (dotted 
line) for the WNP (Reprinted with permission from Springer 
Nature : Kossin, J.P., 2018 : A global slowdown of tropical 
cyclone translation speed, Nature, 558, 104-107, Copyright 
(1986)). 
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By analyzing 64 years (1950–2013) of 
observations and storm surge model simulations, 
Oey and Chou (2016) reported a statistically 
significant rise in the intensity and a poleward-
shifting of location of TC induced storm surges in 
the WNP after the 1980s.  They suggested that 
the rising and poleward-shifting trends of storm 
surges are mainly attributed to a slowdown of TC 
translation speed and the tendency for TC tracks 
to more readily recurve in recent decades which 
are in turn closely related to the weakening of 
easterly steering flows over the tropical and 
subtropical WNP. 

2.6 Summary

Using data updated to 2017, four best track 
datasets continue to show significant interdecadal 
variations in basin wide TC frequency and 
intensity in the WNP.  While most of the best track 
datasets depict a decreasing trend in basin wide 
TC frequency, the observed trend and its statistical 
significance are still highly dependent on the best 
track dataset used, the analysis period chosen, 
and other analysis details.

For TC intensity analysis, there has been 
encouraging research progress in improving 
the consensus between best track datasets and 
increasing use of the homogenized ADT-HURSAT 
dataset to investigate intensity trends.  Increases 
in the number and intensification rate for intense 
TCs, such as Cat. 4-5s, in the WNP since mid-
1980s was reported by a number of studies 
using various statistical methods to reduce the 
uncertainty in intensity assessment among best 
track datasets.  But comparison of ADT-HURSAT 
and best track datasets intensity trends suggests 
there may be remaining homogeneity issues in the 
best track datasets.  Moreover, spatial and cluster 
analysis of TC intensity depicts inhomogenous 
trends in different subregions of the WNP.  

A significant northwestward shift in TC tracks and 
a poleward shift in the average latitude where TCs 
reach their peak intensity in the WNP have also 
been reported based on data since the 1980s.  
The prevailing track changes have also resulted 

in an increase in TC occurrence, including TC 
landfalls, in some regions, including East China, 
Japan, and the Korean Peninsula in recent 
decades. Moreover, a significant decreasing trend 
of average TC translation speeds in the WNP from 
1949-2016 has been reported.  Poleward-shifting 
trends of storm surges in the WNP after 1980s 
were also reported in a study using observations 
and model simulated storm surge data. A global 
reanalysis of storm surges and extreme sea 
levels also suggested that, China, Japan and 
Vietnam in the WNP are among the 10 most-
exposed countries to a 1 in 100-year flood in 
terms of exposed population.  Another study 
finds no significant trend in 50-year return period 
TC-induced storm surges in the western North 
Pacific.

TC rainfall trends can be significantly influenced 
by changes in TC frequency and prevailing tracks 
and may vary between regions.  Some studies on 
TC rainfall trends in the region report increasing 
trends in TC rainfall intensity in southeastern 
China, central Vietnam, and the Philippines. 
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Detection and Attribution of Tropical 
Cyclone Changes

3.1  Introduction

This chapter addresses the question of 
whether there are detectable changes 
in TC activity in the Typhoon Committee 

Region and whether any changes in TC activity 
in the region can be attributable to human-
induced climate change.  Much of the material 
and conclusions are similar to those in a recently 
published WMO Task Team report on this topic 
at the global scale (Knutson et al., 2019), though 
here we focus only on those changes occurring 
in the Typhoon Committee Region.  Walsh et al. 
(2016) present a recent literature review of tropical 
cyclones and climate change that is relevant to 
this chapter.

A “detectable change” in this report refers to 
a change in TC activity that is highly unlikely 
to be due to natural variability alone.  Natural 
variability can either refer to internal variability 
within the climate system (like El Nino events) 
or to changes caused by natural forcings on the 
climate system (like changes in solar radiation 
or volcanic activity).   Different methods can be 
used to assess whether a TC activity change is 
detectable, including trend analysis (with careful 
consideration of the possibility that a trend was 
produced by natural processes)  and comparison 
of observed TC changes with changes obtained 
from model simulations of natural or internal 
variability.

A “detectable anthropogenic change” here refers 
to a change that is both detectable and where 
the sign of an anthropogenic influence can be 
established with some degree of confidence. 
“Attribution” in this report refers to evaluating the 
relative contributions of different causal factors to 
an observed change, including an assessment 
of statistical confidence (Hegerl et al. 2010).  
Attribution can be made either for changes 
that have been established as “detectable” or 
for changes which have not been shown to be 

detectable.  In the latter case, the attribution claim 
is of a type known as “attribution without detection”, 
which typically have relatively low confidence, 
although there may be useful for early identification 
of changes that may later emerge as detectable 
changes.  The anthropogenic component of 
change is normally estimated using a climate 
model historical forcing run.  Future projections 
from climate models can give some sense of 
the nature of expected historical influence, but 
should be used with great caution, if at all, for this 
purpose, since historical climate forcings will differ 
substantially from expected future climate forcings 
(mix of aerosols vs. greenhouse gas forcing, etc.)

Changes in TC activity which we assess can 
include long-term changes such a trend over 
many decades, or in some cases a particular 
event (storm case or unusually active season) 
where a particular “event attribution” study has 
been published, which makes claims about 
whether anthropogenic climate change either 
changed the probability of occurrence of an event 
over some threshold level or whether it altered the 
intensity of the event in a given direction.  This 
recognizes recent developments in the field of 
event attribution (e.g., NAS, 2016).  Again a model 
simulation with historical forcing is normally used 
in constructing the “counterfactual” case that 
attempts to represent the world in a pre-industrial 
state where there was presumably much less 
human influence on climate than in the industrial 
era.  

In assessing whether a TC change is detectable 
or whether anthropogenic forcing contributed 
in a certain direction to the change, different 
types of errors can be considered.  Following 
Lloyd and Oreskes (2018) if we conclude that 
a change is detectable or that anthropogenic 
forcing contributed, and this turns out not to be the 
case, we have made a Type I error (overstating 
of anthropogenic influence).  On the other hand, 
if we do not conclude these are the case when 
in fact anthropogenic forcing had contributed, 
we are making a Type II error (understating 
anthropogenic influence).  

Previous TC/climate change assessments typically 
have focused on avoiding Type I errors.  Here 
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we will separately consider two complementary 
viewpoints:  emphasis on avoiding Type I error 
and emphasis on reducing the occurrence of Type 
II error.  (Type II error can be trivially avoided by 
concluding that all TC changes or events had 
anthropogenic contributions, but we seek a more 
useful and meaningful assessment by instead 
trying to reduce occurrence of such errors through, 
for example, a lowering of the requirements used 
to conclude that an anthropogenic contribution is 
present.  We will nonetheless require substantial 
evidence and require that at least the balance of 
evidence supports the conclusion of detectable 
change or anthropogenic influence.  We recognize 
in advance that this approach will result in more 
speculate statements with a higher expected 
occurrence rate for Type I errors (e.g., false alarms 
for detectability or anthropogenic influence), and 
so any statements arising out of the goal of “Type 
II-error reduction” will be stated separately from 
typical Type I error avoidance statements in our 
conclusion, in order to clearly distinguish the 
different types of statements. 

Before commencing with the assessment of 
detectable/attributable changes in TCs, we note 
that there is published evidence of detectable 
and attributable climate change for some climate 
variables in the WNP basin.  One example of 
this is Gillett et al. (2008) who found evidence 
for attributable anthropogenic warming of 
SSTs in the tropical cyclogenesis region in the 
basin using detection/attribution fingerprinting 
techniques.  A second example is the regional 
surface temperature trends analysis of Knutson 
et al. (2013) who present maps (their Fig. 10 e,f) 
indicating a number of areas in the basin where 
a century-scale detectable warming trend is 
observed, with a contribution from anthropogenic 
forcing, according to their grid-point based 
assessment using SST observations and CMIP3/
CMIP5 models.

3.2  TC-Climate Change Case Studies

In this section, we consider several published 
cases where a conclusion about detectable 
change or about anthropogenic influence on past 

TC activity has been made.   

a) Case Study:  Poleward migration of latitude 
of maximum intensity (western North Pacific)

In the WNP, the latitude of lifetime-maximum 
intensity (LLMI) of TCs has moved northward 
since the 1940s (Kossin et al. 2014; 2016; 2018b).  
A poleward migration has also been identified 
globally and in both hemispheres, though in not 
all individual basins, but appears to be statistically 
most robust in the WNP basin.  It is thought to be 
related to the global poleward expansion of the 
tropics in general (Sharmila and Walsh 2018).  
Lucas et al. 2014 review the topic of tropical 
expansion.  Studholme and Gluev (2018) and 
Tennille and Ellis (2018) reported relatively small 
poleward migration of LLMI in the basin, but both 
used much shorter analysis period. Song and 
Klotzbach (2018) infer that both the Interdecadal 
Pacific Oscillation and basin SST warming and 
related potential intensity increase are factors 
affecting the poleward migration in the WNP, 
by influencing the genesis latitude (Daloz and 
Camargo 2018) and the latitudinal distance from 
genesis to the LMI, respectively.  

Liang et al. (2017) provide independent 
supporting evidence for a poleward shift in TC 
tracks in the region, and evidence for a slowing 
of TC propagation speeds near Taiwan in recent 
decades, based on an analysis of 64 years of TC-
induced rainfall trends around Taiwan.   Altman 
et al. (2018) used analysis of tree-rings in the 
basin to infer that TC-induced damage to forests 
has increased in the more poleward regions, 
comparing pre- and post-1920 periods.  This 
supports the notion of a long-term poleward shift 
of TC activity in the region and lends support to 
the notion that the observed changes are unusual 
compared to natural variability. 

The LLMI changes in the basin may be related to 
shifts in TC occurrence of tracks from the South 
China Sea toward the East China Sea in recent 
decades and shown in a number of studies (Kossin 
et al. 2016).  In addition, the location of maximum 
intensity has moved closer to East Asia during 
1977-2010 (Park et al. 2014), leading to increased 
TC landfall intensity over east China, Korea and 
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Japan.   Choi et al. (2016) interpret the poleward 
movement of the LLMI in the region as due to 
changes in steering flows producing changes in 
TC tracks and genesis location.  Zhan and Wang 
(2017) note that the poleward movement of LLMI 
in the region is most pronounced for weaker TCs, 
and that environmental conditions over the past 30 
years have tended toward favoring genesis in the 
northwestern part of the basin where there is less 
available time for a TC to become very intense.  
The observed decadal shifts in TC activity in the 
region will be further discussed in a separate case 
study below.  

Exploring the potential causes of the LLMI trends, 
Kossin et al. (2016) performed linear trend analysis 
on the poleward shift of LLMI in the WNP since 
the mid-1940s.  While the trend through 2016 is 
only marginally statistically significant in the full 
time series, they found that when they removed 
(via linear regression) the influence of key modes 
of multidecadal variability in the region (i.e., El 
Nino/Southern Oscillation and the Pacific Decadal 
Oscillation), the trend in the residual series 
became even more statistically significant than in 
the original series. The statistically significant of 
the trend is also robust to the statistical removal of 
the Atlantic Multidecadal Oscillation (which Zhang 
et al. 2018 showed could be related to WNP TC 
activity), or the Interdecadal Pacific Oscillation 
rather than the PDO (J. Kossin, personal 
communication 2018).  The statistically significant 
of the trend in the residuals is also robust when 
different TC datasets are used (Kossin et al. 
2016a), or with the use of either annually or 
seasonally (July-November) averaged climate 
indices (J. Kossin, personal communication 2018).  

Modeled trends in WNP LLMI were analyzed 
based on CMIP5 historical runs and 21st century 
projections (Kossin et al. 2016a).   TC simulations 
of CMIP5 models have a number of limitations 
in the basin, with some models simulating 20% 
or less of the climatological frequency of TCs 
there.  The CMIP5 historical run ensemble mean 
shows a nominally positive, but not statistically 
significant, trend in LLMI over 1980-2005, while 
there is a statistically significant poleward trend 
in the Representative Concentration Pathway 8.5 
(RCP8.5) scenario for the CMIP5 models analyzed 

by Kossin et al. (2016).  The pattern of track density 
changes in the CMIP5 historical simulations is 
qualitatively similar to that in the observations, 
which supports the notion of some anthropogenic 
influence on the observed track density changes.

In another modeling study, Oey and Chou (2016) 
explored multidecadal changes of historical storm 
surge events for the region by simulating surge 
events, driving an ocean model with observed 
estimated wind forcing from TCs in the WNP 
basin. They infer an increase in the intensity of 
simulated surges since 1950 and a poleward shift 
of the latitude of intense surge events since about 
1980.  However, the linkage of these changes to 
anthropogenic forcing was done only in relatively 
general terms, and they did not estimate this 
effect through direct climate forcing experiment 
nor demonstrate that the changes were outside 
the range of natural variability.  

Figure 3.1  Average (July-November) latitude of tropical 
cyclones in the WNP at the time of their maximum intensity 
based on surface winds.  Shown is the residual time series 
obtained after regressing the original time series onto the 
Pacific Decadal Oscillation and El Nino/Southern Oscillation 
indices and then removing those components from the time 
series.  The trend statistics in the panel include the rate of 
poleward migration (degrees latitude per decade) and two-
sided 95% confidence intervals for the trend.  The p-value 
indicates the statistical significance of the trend based on 
a calculation that does not include the large positive outlier 
for 2016 (red) which would make the trend more significant.  
From Kossin (2018b), licensed under CC BY 4.0

We conclude that from a Type I error perspective, 
that there is low-to-medium confidence that the 
observed poleward migration of the WNP basin 



18

LLMI is detectable compared with the significant  
natural variability of TC activity in this basin.  
However, because the simulated change in the 
CMIP5 historical runs is not statistically significant, 
we have only low confidence that the observed 
change has a positive anthropogenic contribution.

Alternatively, from a Type II error perspective, 
where we are attempting to reduce cases of 
overlooked detection or anthropogenic influence, 
we find that the balance of evidence suggests that 
the observed poleward migration of latitude of 
maximum TC intensity in the WNP basin is both 
detectable and that it has a positive contribution 
from anthropogenic forcing.
 
b) Case Study:  Landfalling TC trends 

A relatively long record of landfalling TC activity 
is the century-scale time series of TC landfalls 
for Japan, extending back to 1901 (Fig. 2 from 
Kumazawa et al. 2016).  This time series shows 
no prominent trend since 1901.  Similarly the 
(shorter) available landfalling time series from 
a number of other subregions of the Typhoon 
Committee region generally do not show 
consistent pronounced increasing trends but a 
mixture of different changes (e.g., Lee et al. 2012).  
For example, there is a statistically significant 
increase for the Korean peninsula, but most of 
the other regional TC landfalling series in Lee et 
al. (2012) show no change or decreasing trends.  
To date no study has made a clear demonstration 
that any observed landfalling TC trends in the 
region are unusual compared to natural variability.  
Given this lack of detectable trends and the 
finding from Kossin et al. (2016) of a lack of 
statistically significant poleward displacement of 
TCs in the basin in the CMIP5 historical runs, we 
conclude there is no strong evidence to indicate a 
detectable anthropogenic influence on landfalling 
TC frequency to date in the Typhoon Committee 
region.    
 
c) Case Study:  Event attribution for 
supertyphoon Haiyan (2013)

Event attribution studies can examine individual TC 
events for evidence of anthropogenic influence—
either on the probability of occurrence of an event 

beyond some threshold value or on the intensity 
of an observed event.  As discussed in  a U.S. 
National Academy of Sciences (NAS) 2016 report, 
one approach is to use an “ingredients-based” 
methodology, re-simulating an event using a model 
(e.g., a TC forecast model), but altering the large-
scale environmental conditions (e.g., sea surface 
temperatures and atmospheric temperatures) 
based on an estimate of pre-industrial-to-current 
anthropogenic climate change.  

Takayabu et al. (2015) used this approach to re-
simulate supertyphoon Haiyan’s (Philippines, 
2013) intensity, using an estimated anthropogenic 
SST change signal characterized by relatively 
strong SST warming near the Philippines, with 
atmospheric boundary conditions from a lower 
resolution global model, and using a very high 
resolution (~2 km grid) nested regional model.  
They found that the imposed anthropogenic 
changes to the environment strengthened the 
present-day storm compared to the pre-industrial 
version of the storm.  On the other hand, Wehner et 
al. (2018) simulated a decreasing anthropogenic 
influence on Haiyan’s intensity.  They used a 
lower resolution model—a global domain, with 
grid spacing locally as fine as 8 km in the WNP.  
They also used a different method of estimating 
the anthropogenic changes to the environment 
(climate model simulation with historical forcing 
vs. the Takayabu approach of using a linear 
trend obtained from the HadISST reconstructed 
historical SST data).  These ingredients-based 
studies assume the existence of a particular storm 
and synoptic situation and thus do not address 
whether anthropogenic forcing altered the storm’s 
probability of occurrence.  The Takayabu et al. 
study does not incorporate possible anthropogenic 
influence on circulation features that could affect 
the storm’s track (steering flow) or intensity 
changes (via environmental wind shear), whereas 
these circulation change influences are included 
in the Wehner et al. approach. 

These event attribution studies do not attempt to 
provide evidence for an observed change in TC 
activity being detectable (i.e., an observed climate 
change signal TC intensity in the region that is 
highly unusual compared to natural variability 
alone). Therefore, in the above studies, any cases 
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of inferred anthropogenic attribution are examples 
of attribution without detection. 

From the perspective of avoiding Type II errors, 
we conclude that the evidence from available 
studies is divided on whether anthropogenic 
forcing contributed to the intensity of supertyphoon 
Haiyan in the WNP.  

d)  Case Study:  Event attribution for recent 
anomalous TC seasonal activity

Event attribution studies can examine groups 
of events (e.g., individual TC seasons or even 
groups of seasons) for evidence of anthropogenic 
influence—either on the probability of occurrence 
of a number of events beyond some threshold 
value or on the total number of events in the 
season.  Model simulations of pre-industrial-to-
current anthropogenic climate change can be 
used to re-simulate entire seasons or multiple 
seasons of activity under pre-industrial vs. modern 
day conditions.  

Analyzing the causes of the unusually active WNP 
TC season of 2015 using model simulations, Zhang 
et al. (2016) infer an anthropogenic contribution to 
high Accumulated Cyclone Energy (ACE) in the 
basin in that season.  Using a purely statistical 
approach, Yang et al. (2018) infer a contribution 
of global warming to record-setting (1984-2015) 
TC intensity in the WNP in 2015.  

The above studies are examples of event 
attribution studies.  Neither of these studies 
provides convincing evidence that an observed 
change in TC activity in the WNP is detectable 
(i.e., an observed climate change signal that is 
highly unusual compared to natural variability 
alone). Therefore, in the above studies, any cases 
of inferred anthropogenic attribution are examples 
of attribution without detection.  The Yang et al. 
study uses global temperature as a statistical 
predictor, rather than estimating an anthropogenic 
contribution from climate model simulation. 

From the perspective of avoiding Type II errors, we 
conclude that the balance of evidence suggests 
an anthropogenic contribution to the highly active 
2015 WNP TC season.  We do not conclude that 

the observed changes are detectable, or unusual 
compared to natural variability, based on the 
balance of available evidence.   

e)  Case Study: Increase in proportion of 
Category 4-5 TCs

Holland and Bruyère (2014) analyzed changes 
in TC frequency for various storm categories, 
assessing IBTrACS/JTWC intensity data and a 
shorter homogenized satellite-based intensity 
data (Kossin et al. 2013).  From the satellite-based 
data, they conclude that the global proportion of 
hurricanes reaching Category 4 or 5 intensity has 
increased by 25-30% per degree Celsius of global 
warming in recent decades.  They found a similar 
those weaker trend signal using Kossin’s (2013) 
shorter--but homogenized--global satellite TC 
intensity record.  

Their globally focused analysis contains some 
information on the WNP basin.  Using the JTWC 
data without correction other than a conversion 
to 10-minute mean windspeeds, they find a 
statistically significant positive trend in category 
4-5 proportion for the WNP using data from 1975 
to 2010.  However, they did not report results for 
the WNP using the shorter, homogenized ADT-
HURSAT (Kossin 2013) satellite-based record.  
For landfalling TCs globally, they find a statistically 
significant increase in category 4-5 proportions 
based on the data of Weinkle et al. (2012), but 
they reported only a weak, negative trend in this 
metric for the WNP, which they attributed to a shift 
in recent decades of the main genesis location in 
the basin toward the equator and eastward. 

The potential importance of data homogeneity 
for this problem was noted by Klotzbach and 
Landsea (2015).  Their trend analysis of category 
4-5 percentages used JTWC data for the years 
1970-2014.  Their results for the WNP indicate 
statistically significant increasing trend for 1970-
2014, but not for 1970-2004 or for 1990-2014.  
They recommend that global trend studies begin 
around 1990 owing to data homogeneity concerns 
(which presumably refers to the JTWC data, but 
not necessarily to the satellite-based data of 
Kossin (2013). 
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These analysis did not compare the observed 
trends to expected internal climate variability on 
various multi-decadal timescales from climate 
model control runs.  Holland and Bruyere’s 
linkage to anthropogenic forcing as a mechanism 
is statistical in nature as there is no explicit 
comparison between observed storm metrics and 
those derived from simulations using historical 
forcings.  They inferred that the observed increase 
may be reaching a saturation point soon and may 
not continue increasing over the coming century, 
which would hinder its detectability, although they 
noted that this saturation point may be higher for 
the WNP basin than other basins.

Considering this evidence from a WNP focus and 
from a Type I error perspective, we conclude that 
there is only low confidence in detection of any 
anthropogenic climate change signal in historical 
proportion of category 4-5 TCs in the WNP.  
Alternatively, from the perspective of reducing 
Type II errors (where we require less convincing 
levels of evidence), the studies of Holland and 
Bruyère (2014) and Klotzbach and Landsea 
(2015) provide conflicting interpretations for the 
WNP, and neither study presented clear evidence 
of a detectable trend there using the shorter, 
homogenized satellite-based intensity record of 
Kossin (2013).  Therefore, we do not conclude that 
the balance of evidence supports the notion of a 
detectable increase in the proportion of Category 
4-5 storms in the WNP, nor of an anthropogenic 
forcing influence on this proportion.    

f)  Case Study:  Slowdown of TC translation 
speeds

Kossin (2018a) found a statistically significant 
decreasing trend in TC translation speed over 
the WNP over  1949-2016—a change seen in a 
number of other basins, but which was especially 
pronounced over land regions near the WNP (21% 
decrease).   However, follow-on analyses by Moon 
et al. (2019), Lanzante (2019) suggest that the 
observed global trend reported by Kossin (2018a) 
may be influenced by changes in observing 
capabilities over time, casting some doubt on the 
robustness of the reported global trends, which we 
infer likely applies in the case of reported trends 
in the WNP since 1949 as well.  A previous study 

by Chu et al. (2012) had also found a statistically 
significant decline in TC translation speeds (1958-
2009) in the WNP and South China Sea regions, 
accompanied by a decrease in steering flows.  
Based on the available studies we assess the 
confidence in a decreasing trend in observed 
TC translation speed in the WNP as low. There 
are very few modeling studies of anthropogenic 
influence on TC propagation speeds in the WNP 
(e.g., Kim et al. 2014), and none in historical 
simulation mode, and so we conclude that it is 
premature to ascribe these observed changes to 
anthropogenic influence.  

Altman et al. (2013) reported very strong century-
scale increases in typhoon-related rainfall rates 
over Korea during 1904-2008, although their 
study does not present enough methodology 
details for a careful assessment.  Kim et al. (2006) 
had previously reported large increases in TC-
related rainfall rates in Korea beginning around 
1980, based on a shorter record extending back 
to 1954.   These changes in TC rainfall could be 
related to the observed changes in TC propagation 
speed, since slower-moving TCs would drop more 
precipitation on given locations.

In summary, from a Type I error avoidance 
perspective, we have low confidence that there has 
been a detectable decrease in WNP TC translation 
speeds since 1949 or that anthropogenic forcing 
has contributed to the observed decrease.   
Alternatively, from the perspective of reducing Type 
II errors, the balance of evidence is inconclusive 
on whether there has been a detectable decrease 
in TC translation speeds over land regions near 
the WNP since 1949, nor is there a balance of 
evidence that anthropogenic forcing contributed 
to such an observed decrease.  

g)  Case Study:  TC frequency changes

Analyses of time series of TC frequency in the 
WNP were presented in Ch. 2 for both tropical 
storms and storms of typhoon intensity.  These 
analyses show some evidence for statistically 
significant decreasing trends, but the results are 
dependent on the dataset used and the period 
examined.  The longest records examined 
(from JTWC, extending back to 1945) show no 
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statistically significant trends in either tropical 
storms or typhoons.  Zhao et al. (2018a) conclude 
that internal variability (the Interdecadal Pacific 
Oscillation) contributed to the lower TC frequency 
observed in the WNP basin after 1998.  

We conclude that there is no substantial evidence 
for a detectable anthropogenic influence on 
tropical storm or typhoon frequency in the WNP.  

h) Case Study:  TC intensity changes

The question of whether there has been any 
detectable anthropogenic influence TC intensities 
in the basin can be characterized in terms of two 
issues:  whether the data are reliable enough for 
trend analysis, and if a trend is found, whether 
the trend can distinguished from natural variability 
and can any changes be causally attributed to 
anthropogenic forcing.  

Trend analyses of past change in TC intensity in 
the WNP (Ch. 2) have produced conflicting results.  
Some studies have reported increasing trends of 
intensity and related metrics:  including increased 
TC intensity since 1984 (Kang and Elsner 2012), 
increased intensity and intensification rates since 
the 1970s (Mei et al. 2015), increased number 
of very intense (category 4 and 5) typhoons 
since 1965, with a change-point in 1987, based 
on adjusted TC data (Zhao and Wu 2014), and 
increased intensification rates from tropical storm 
to typhoon stage during 1986-2010 (Kishtawal et 
al. 2012).  These studies were based on use of 
the conventional best track intensity data, in some 
cases with adjustments for homogeneity issues.  
Significant problems with historical records of 
TC intensity in the basin were noted by Knapp et 
al. (2013), based on analysis of central pressure 
data, and they particularly noted low confidence 
with wind-based estimates in older parts of the 
best track data.  To address the data homogeneity 
problems using objective intensity estimation 
from satellite data, Kossin et al. (2013) analyzed 
intensities using both best track data (IBTrACS) 
and the ADT-HURSAT satellite-based record over 
1982 -2009.  Statistically significant increases 
were found for some quantiles of the data in the 
best track data, but these were not supported in 
the ADT-HURSAT data, which had some negative 

trends at higher quantiles.  

Clearly there are data quality issues to be 
addressed with intensity data in the basin, and 
trend results will depend on the nature and quality 
of adjustments made to the data to attempt to 
correct for time-dependent biases which can 
introduce spurious trends.  In addition to these data 
concerns, while a number of the above studies link 
intensity changes to surface temperature metrics, 
there are not clear demonstrations in the published 
studies that observed trends in TC behavior are 
outside the range of expected natural variability 
in the basin, or that the observed changes have 
been caused by anthropogenic forcing.  For 
example, changes in the proportion of TCs in 
the basin undergoing rapid intensification was 
observed to increase, beginning in 1998, but this 
change was linked to decadal changes in large-
scale atmosphere-ocean conditions, and was 
not linked to anthropogenic forcings (Zhao et al. 
2018c).  

Concerning landfalling TC intensity, Mei and Xie 
(2016) found increased intensity and intensification 
rates of landfalling typhoons since the 1970s.  
They estimate that landfalling typhoons that strike 
East and Southeast Asia have intensified by 12–
15% over the past 37 years, which they attributed 
to locally enhanced surface warming.  While data 
quality issues for landfalling TCs are presumably 
not as severe as for the basin-wide data, their 
study links the intensity changes to surface 
warming but does not claim to have detected an 
anthropogenic climate change signal.  
In summary, we conclude that there is not a balance 
of evidence to support the notion of a detectable 
anthropogenic influence on TC intensities in the 
basin.

i) Case Study:  Spatial variations in TC activity 
within the WNP basin

In addition to the poleward shift of the latitude 
of maximum intensity discussed above, other 
examples of spatially varying trends in TC activity 
have been documented for the WNP basin.  
These are discussed in Ch. 2.  Among these 
changes are a spatially varying pattern of TC 
intensity trend (Park et al. 2013) with weakening 
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over an oceanic region east of the Philippines 
an increases further north (Figure 2.5); TC 
occurrence changes with a northwestward shift 
of TC occurrence after the mid-1990s (Fig. 
2.8, adapted from Kossin et al. 2016); and a 
northwestward shift in TC tracks over the period 
1977-2013 (e.g. Zhao and Wu 2014; and Figs. 
2.6 and 2.7, adapted from Mie and Xie 2016).   
The changes have produced a decreased TC 
exposure in the Philippines and South China Sea, 
including the Marianas, Philippines, Viet Nam, 
southern China; and increased TC exposure in 
the East China Sea, including Japan, Republic or 
Korea, and parts of East China (see also He et 
al. 2015; Li et al. 2017, Zhao et al. 2018b).
  
There is not yet compelling evidence linking 
such changes to anthropogenic forcing nor a 
demonstration that the observed changes are 
unusual compared to expected natural variability.  
The analysis of Kossin et al. (2016) provides 
some evidence of climate change detection and 
weak evidence of anthropogenic influence, but 
their analysis focused mainly on the poleward 
migration of the latitude of maximum intensity.  
Oey and Chou (2016) attribute the shift in TC 
occurrence in the basin in recent decades to 
a weakening of easterly steering flows, while 
Liang et al. (2017) attribute it to a weakening and 
eastward shift of the subtropical high.  However, 
these circulation changes were not shown to be 
distinct from natural variability or to be caused 
by anthropogenic forcing.  In one modeling study 
of potential anthropogenic influence on decadal 
TC variations in the basin, Takahashi et al. 
(2017) inferred that changes in sulfate aerosol 
emissions caused more than half of the observed 
decline in TC frequency in the southeastern 
part of the WNP during 1992-2011.  However, 
given the high degree of uncertainty in modeling 
aerosol influence on climate (e.g., Malavelle et 
al. 2017), more studies of this phenomena are 
needed, including an exploration of the model 
dependence of results, before firmer conclusions 
can be made.  

We conclude that for the examples of spatial 
variation of TC activity discussed above and 
in Chapter 2, there is not sufficient evidence to 
conclude that the changes are either unusual 

compared to natural variability or that they contain 
a substantial anthropogenic contribution.  

j)  Case Study:  TC rainfall changes

Observational studies of TC rainfall changes 
in the WNP are reviewed in Section 2.5.  Some 
examples of statistically significant trends in some 
TC rainfall-related metrics are given.  However, 
some of the observed changes are relatively 
regional in scale (e.g., Tu and Chou 2013; Li et al. 
2015; Nguyen-Thi et al. 2012) and appear related 
to such factors as tropical cyclone frequency (i.e., 
more/fewer TCs in a region leading to more/less 
TC-related rainfall (Zhang et al. 2013)), or regional 
slowing of TC propagation speeds (Tu and Chou 
2013), and in some cases TC rainfall intensity (Li 
and Zhou 2015).  Lau and Zhou (2012) reported 
a reduction in rainfall energy per storm over the 
WNP for 1998-2007 compared to 1988-1997 using 
Tropical Rainfall Measurement Mission (TRMM) 
and Global Precipitation Climatology Project 
(GPCP) datasets, but noted that the relatively 
short data record length and other limitations 
of the rainfall data prevented their making any 
definitive conclusions about long-term changes in 
TC rain rates.

The influence of multiple factors on TC 
precipitation can confuse the interpretation or 
attribution of such changes in a climate change 
context (Chang et al. 2012). Trends over relatively 
short periods may well have predominant 
natural variability components that need to be 
distinguished from any anthropogenic influence 
(e.g., Bagtasa 2017).  While some statistically 
significant trends were noted in the above studies, 
none of the observational studies of TC rainfall 
reviewed in Section 2.5 provide clear evidence for 
observed changes (e.g., long-term trends) in TC-
precipitation metrics that are detectable, or highly 
unusual compared to expected levels of natural 
variability.  Possible influence of decadal to 
multidecadal variability of likely natural origin (e.g., 
the Pacific Decadal Oscillation, or Interdecadal 
Pacific Oscillation) on the observed trends has not 
been explicitly addressed.  

Additionally, most studies show mixtures of results 
across stations, and it remains unclear whether 
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the fraction of stations passing certain significance 
thresholds exceeds the fraction expected by 
chance (i.e., field significance).  Wang et al. 
(2015b) suggest that anthropogenic warming has 
probably contributed to increased precipitation 
and TC activity over central Vietnam since 1970, 
but this was not an attribution conclusion based 
on quantitative (modeling) analysis. 

In addition to limitations of linear trend analysis 
and available datasets, another complication with 
detection and attribution with regard to TC rainfall 
changes is that such changes can be influenced 
by a large number of factors, including:  changes 
in track or frequency of occurrence of TCs altering 
total TC rainfall in a region; changes in size or 
propagation speed of TCs affecting accumulated 
rainfall in given locations; changes in storm 
duration affecting storm-total precipitation; and 
changes in the average rainfall rate out of a TC, 
which considers the flux of precipitation, averaged 
over some region, in a coordinate system that 
moves along with the storm.  We note that it is 
the latter type of change (TC rainfall rate in the 
storm-relative context) that climate models and 
downscaling studies are projecting will likely 
increase with global warming (e.g., Knutson et 
al. 2010; Knutson et al. 2015) since there are 
changes in this Lagrangian precipitation rate that 
are most closely related to the higher water vapor 
content of air in a warmer climate.

Concerning modeling studies, Wang et al. (2015a) 
examined the water budget of two landfalling 
typhoons on Taiwan using cloud-resolving 
model simulation case studies.  They artificially 
modified the large-scale environment to reflect 
the long-time-scale change in the region between 
1950–69 and 1990-2009, based on reanalysis 
data.  They showed that in the slightly cooler 
and drier conditions of the 1950-1969, the TC 
precipitation rates were slower, due mainly to 
reduced atmospheric moisture content.  This 
study quantitatively demonstrated the importance 
of the increased water vapor content for producing 
enhanced precipitation rates in typhoons under 
warmer climate conditions.  However, since 
the changes between the two time periods they 
studied must be considered as some combination 
of anthropogenic and natural changes, their study 

does not constitute an anthropogenic forcing 
attribution study.

We conclude that for TC rainfall rates in the basin, 
there is not sufficient evidence or a balance of 
evidence to conclude that any observed changes 
or trends are either unusual compared to natural 
variability or that they contain a substantial 
anthropogenic contribution.  

3.3 Summary

In summary, using the conventional perspective 
of avoiding Type I error (i.e., avoiding overstating 
anthropogenic influence), the strongest case for 
a detectable change in TC activity in the WNP is 
the observed poleward migration of the latitude of 
lifetime maximum intensity (LLMI).  There is low-
to-medium confidence that the observed poleward 
migration of the WNP basin LLMI is detectable 
compared with the significant natural variability of 
TC activity in this basin. However, there is only 
low confidence that anthropogenic forcing had 
contributed to this poleward shift.  There is low 
confidence that any other observed TC change 
in the WNP is either detectable or attributable to 
anthropogenic forcing.

From the perspective of reducing Type II errors (i.e., 
avoiding understating anthropogenic influence), a 
number of further tentative TC detection and/or 
attribution statements can be made.  We caution 
that these may have potential for being false 
alarms (i.e., overstating anthropogenic influence), 
but they nonetheless may be useful indicators 
of evolving risk. With this caveat, the balance of 
evidence suggests:  i) detectable anthropogenic 
contributions to the poleward migration of the 
latitude of maximum intensity in the WNP; and ii) 
an anthropogenic influence (but without detection) 
on the unusually active TC season in the WNP in 
2015

While we are not aware that any TC climate 
change signal has been convincingly detected 
to date in sea level extremes data in the WNP 
basin, a widespread worsening of storm surge 
levels is believed to be occurring due to sea level 
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rise associated with anthropogenic warming, 
assuming all other factors equal. 

There are a number of reasons for the relatively 
low confidence in detection and attribution of 
TC changes in the basin.  These include data 
homogeneity concerns (observation limitations),  
the small signal to noise ratio for expected 
anthropogenic changes, and uncertainties in 
estimating background natural variability levels 
and the response of TC activity to historical 
forcing agents, including greenhouse gases and 
aerosols.  Concerning the forced response, it is 
possible that past aerosol forcing has offset much 
of the influence of greenhouse gas warming on 
TC intensities to date, yet aerosol forcing is not 
be likely to continue to offset this influence during 
the coming century (e.g., Sobel et al. 2016).   
We strongly recommend continued monitoring 
of various TC metrics in the basin for signs of 
emerging anthropogenic influence.  
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Tropical cyclone impacts in the Typhoon 
Committee region

4.1 Climatological mean features of 
tropical cyclones (TCs)  

The typhoon committee region is composed 
of the 14 member nations encompassing 
a variety of climates. Therefore, features 

of TC impact vary between member nations. For 
the present report, our expert team conducted 
a survey in 2016 to 2018 to obtain observed 
information about regional features of TCs and 
their impacts from each member nation and/or 
region.  This chapter will summarize the survey 
and list the survey data in Tables A1 – A3 of the 
Appendix. In addition to the survey, this chapter 
reviews new findings on TC impacts in the literature 
since the Team’s second assessment report. The 
term “tropical cyclone” (TC) can be used to refer 
to storms of different intensity ranges in different 
contexts/literature, and the definition can include 
tropical depressions, tropical storms, severe 
tropical storms, and typhoons.  In this chapter, we 
generally use TC to refer to cyclones originating 
over tropical ocean regions including all intensity 
classes (i.e., including tropical depressions).  
However, elsewhere in the report, TC will refer 
to TCs of at least tropical storm (TS) intensity.  
Definitions of TC different from these conventions 
will be explicitly noted.

4.2 Frequency and intensity of landfalling 
and affecting tropical cyclones

4.2.1  Climatology of landfalling/affecting 
TCs

The climatological mean annual frequency of TC 
genesis in the WNP for the period of 1971 to 2010 is 
25.6, while that of previous three decades is 26.7. 
Although the 14 member nations share this value, 
the number of landfalling/affecting TCs varies by 

nation. The climatological mean numbers of TCs/
typhoons landfalling in and affecting each member 
nation of the Typhoon Committee are summarized 
in Table A1. The definitions of landfalling and 
affecting are also listed in Table A2. 

China climatologically experiences 9 landfalling 
TCs each year, the most by any of the 14 
Members. The Philippines follows China as the 
second highest with about 7 to 8 per year (Table 
A1). TCs with TS intensity or above make landfall 
in Japan 2.7 times per year. There was about 0.8 
landfalling TCs (maximum winds of 17.2 ms-1 or 
above) in Republic of Korea per year. There are 
about 6.2 TCs and 2.3 typhoons annually affecting 
within 500 km for Hong Kong, China. There 
are about 1.0 TCs annually with TS or above 
intensity necessitating the issue of TC Signal 
No.8 in Macao (see Table A2) and 0.6 landfalling 
typhoons. TCs make landfall in Thailand 3 times 
per year. Singapore does not experience direct 
effects of TCs but can experience indirect effects, 
depending on the location of the cyclone such 
as TS Vami in 2001.  According to the second 
assessment (Lee et al., 2012), there are about 1 
to 2 landfalling TCs in Vietnam annually. There are 
about 18 to 20 TCs annually affecting the area of 
responsibility of Guam (Eq.−25˚N, 130˚E−180˚E). 

4.2.2  Frequency and intensity of landfalling/
affecting TCs

 

This subsection focuses on the frequency and 
intensity of landfalling/affecting TCs. Recent 
literature and the results from our survey of 
member nations are described. 

China

Trends in the numbers of TCs and typhoons 
landfalling in China are not statistically significant 
(Fig. 4.1), although a nominal decreasing trend in 
the number of landfalling TCs is observed (Yang 
et al. 2009). 
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Park et al. (2013) reported that geographical 
distribution of TCs moved to East Asian coastlines 
from Vietnam to Japan in recent decades, and the 
TC landfall intensity over east China, Korea, and 
Japan has significantly increased. In contrast, 
insignificant trends are observed across south 
China, Taiwan, and Vietnam (see Figure 2.3). 

Kossin et al. (2014) identify a pronounced 
poleward migration in the average latitude at 
which TCs achieved their lifetime-maximum 
intensity (LMI) over the past 30 years (see Figure 
2.2). This past poleward migration of the latitude of 
peak TC intensity in the WNP has coincided with 
decreased TC exposure in the region of the South 
China Seas and southern China, and increased 
exposure in the region of the East China Sea 
and parts of eastern China. Such a migration, 
if it continues, is expected to cause systematic 
changes, both increases and decreases, in 
regional hazard exposure and risk (Kossin et al. 
2016; see Fig. 2.5).

Mei and Xie (2016) divided WNP typhoons into 4 
cluster groups. Typhoons in the dominant cluster 
constituted around 34% of the WNP; these travel 
northwestwards-to-northwards, and roughly 75% 
of them make landfall over East Asia (north of 
~22˚N; including eastern mainland China, Taiwan, 
Korean Peninsula and Japan) after forming east 
of the Philippines (see Figure 2.4). According to 

the best track data, the annual mean values of 
their lifetime peak intensity have risen by ~8ms-

1 (~15%) during 1977-2013, the largest increase 
among the four groups.

Li et al. (2017) found that TCs making landfall over 
east China have intensified in recent decades, and 
the power dissipation index (PD) of the TCs after 
landfall has significantly increased. The increase 
in the PDI of landfalling TCs over East China is 
associated with a concomitant increase in landfall 
frequency as well as increased landfall intensity 
over east China. 

Hong Kong, China and Macau, China

The time-series of the number of TCs and typhoons 
within a 500-km radius of Hong Kong both show 
a decreasing but not statistically significant trend 
during 1961-2018 (Figure 4.2), and there is no 
statistically significant  trend for TCs coming 
within 300-km range of Hong Kong, China. There 
are also no statistically significant trends in the 
number of TCs (TS or above) affecting Macao, 
China (Figure 4.3). 

Figure 4.2 Annual number of TCs (blue) and typhoons (red) 
come within 500 km range of Hong Kong, China (1961-2018). 
The solid, thick and dashed lines represent the annual 
number, 5-year running mean and linear trend, respectively. 
(Courtesy of HKO)
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Figure 4.1 Annual number of TCs (blue) and typhoons (red) 
landfalling in China (1949-2017). The solid, thick and dashed 
lines represent the annual number, 5-year running mean and 
linear trend, respectively. (Courtesy of CMA).
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Figure 4.3 Annual number of TCs (blue) (TS or above) 
necessitating the issuance of Tropical Cyclone No.8 in 
Macau, China (1953-2017). The solid, thick and dashed lines 
represent the annual number, 5-year running mean and linear 
trend respectively. (Courtesy of SMG)

Japan

There is no statistically significant trend in the 
time series of TCs that approaching with 300 km 
of Japan or make landfall (Figure 4.4), although 
decadal and multi-decadal variations are seen. 
Longer-term analysis also shows no apparent trend 
over 115 years from 1900 to 2014 (Kumazawa 
et al. 2016). The record-breaking number of TC 
landfalls (10) in 2004 is more than three times the 
climatological mean annual number of 2.7 (JMA 
2018). One possible cause of that anomalous 
number in 2004 was the persistence of favorable 
conditions related to three active phases of the 
Madden and Julian Oscillation during June-
October that year (Nakazawa 2006). 

Figure 4.4   The number of TCs with maximum winds of 17.2 m 
s-1 or above that approached Japan (blue) and those making 
landfall in Japan (red) from 1951 to 2017.  The solid, thick 
and dashed lines represent the annual number, 5-yr running 
mean and linear trend respectively. (Courtesy of JMA)

Grossman et al. (2015) demonstrated that fewer 
typhoons approached the area around the four 
main islands of Japan during 1951-2011 when the 
North Pacific subtropical high was extended to the 
west. In contrast, more typhoons approach Japan 
when it extends to the northwest. The winds 
around the North Pacific subtropical high modulate 
the recurvature of the typhoons, affecting storm 
tracks near Japan. 

Republic of Korea

The numbers of TCs with maximum winds of 17.2 
ms-1 or above affecting and landfalling in Republic 
of Korea have no long-term trends over 42 years 
from 1977 to 2018 (Fig. 4.5). While there were no 
very high impact landfalling or affecting typhoons 
from 2013 to 2017. The year 2018 was a highly 
active year, with five typhoons affecting Republic 
of Korea and two landfalling typhoons.

The number of strong typhoons with maximum 
speeds of greater than 44 m s-1 was significantly 
increased for the 10-year period from 2001 to 
2010, although the total number of TCs existing 
near Republic of Korea was insignificantly 
reduced (Cha et al. 2014). Three major factors for 
the changes include the following. First, the mean 
genesis region of TCs influencing Republic of 
Korea was displaced eastward. Second, the North 
Pacific subtropical high and Asia Monsoon trough 
were extended to the northwest and southeast.  
Third, the TCs do not make a landfall until they 
approach the Korean Peninsula. The reported 
increased number of strong typhoons occurs only 
for this period, and the number has returned to the 
climatological value over the 42 year period for 
the most recent eight years (Cha and Shin, 2019).
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Figure 4.5 The number of TCs with maximum winds of 17 
ms-1 or above that approached Republic of Korea (blue) and 
those making landfall in Republic of Korea (red) from 1977 to 
2018. The solid, thick and dashed lines represent the annual 
number, 5-yr running mean and linear trend respectively. 
(Courtesy of KMA)

On a decadal time scale, there was a significant 
difference in TC behavior in the region, comparing 
1965-1983 and 1983-2004. More TCs migrated 
toward the west for the latter period (1984-2004), 
recurved in the southwest, and affected Republic 
of Korea, compared to the former period of 1965-
1983 (Choi and Cha 2015). This stronger intensity 
of TCs affecting Korea for the latter period was 
related to the more southwestward genesis due to 
the southwestward expansion of the Subtropical 
western Pacific high. Weaker environmental 
vertical wind shear during the latter period was 
more favorable for TCs affecting Korea to maintain 
a strong intensity in the mid-latitudes of East Asia. 
The increased number of strong typhoons in the 
2000s (Cha et al. 2014) mentioned above may be 
an instance of internal decadal variability but has 
not yet been investigated.

Thailand

The frequency of TCs (most of which are tropical 
depressions) entering Thailand westward through 
Vietnam has statistically significant decreased 
after the mid-1960 (Fig. 4.6). However, the high 
frequency of TCs during 1960 to 1975 is considered 
to be a decadal variation. In contrast, the annual 
number of TCs of tropical storm intensity or above 
has a slight increase (Ying et al. 2012). 

Figure 4.6 The number of TCs (including TDs) making 
landfall in Thailand (blue) from 1951 to 2017. The solid, thick 
and dashed lines represent the annual number, 5-yr running 
mean and linear trend respectively. (Courtesy of TMD)

The Philippines and Vietnam

The reported frequency of TCs landfalling in/
crossing the Philippines shows no significant 
trend for the period 1948-2010. The reported 
number of typhoons landfalling in/crossing the 
Philippines shows a significant decrease since 
1948, although a decadal variation of the number 
is seen. Cinco et al. (2016) also reported no 
significant trend in TC frequency and intensity 
in Area of Responsibility of the Philippines, and 
in landfalling TCs. A significant increase in TC 
landfall is identified only in the latitude range of 
10˚N–12˚N among the 2-degree ranges of the 
east coast of the Philippines encompassing Leyte 
Island, suggesting that TC landfalling frequency 
may have increased at least in this area (Takagi 
and Esteban 2016). 

An increase in TC genesis frequency over the 
northern part of the South China Sea leads to 
a reduction in the maximum TC intensity before 
landfall, because of their short lifetime; thus, there 
are no clear tendencies in the landfall intensity 
across Vietnam, south China and Taiwan (Park 
et al. 2014). Decreased exposure is observed in 
Vietnam as well as the Marianas, the Philippines, 
and southern China (Kossin et al. 2016).

An overview of observed TC activity and trends in 
the Typhoon Committee Region is given in Chapter 
2, and the question of whether any changes in TC 
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activity or characteristics are detectable and/or 
attributable to human-induced climate change is 
discussed in Chapter 3 for a series of WNP case 
studies. 

4.3 Tropical cyclone induced precipitation 

Zhao and Wang (2012) investigated the decadal 
variations of extreme TCs influencing China 
during 1949-2009 and demonstrated that the 
decade when the maximum daily TC-induced 
precipitation occurred varies with areas and 
eras.  The duration of TC-induced precipitation 
varies with era.  The dominant empirical mode 
of TC rainfall in southeast China during 1960-
2009 consisted of a dipole pattern over southern 
southeast China and eastern southeast China, 
and the associated principal component time 
series exhibits interdecadal variations, with two 
potential change points being identified in the late 
1970s and early 1990s (Li et al., 2015). These 
interdecadal shifts in TC rainfall are also found 
to be synchronous with two regime shifts in total 
rainfall, and they can account for more than 40% 
of the total rainfall anomalies over the coastal 
regions of southeast China.  The average rainfall 
per TC has a statistically significant increase 
in Southeast China during 1965−2009. In the 
peak season (July−September), all significant 
changes are upward trends occurring south of 
the Yangtze River and east of 110°E (Zhang et al. 
2013). The increasing rainfall per TC was found 
not to coincide with the enhanced TC intensity. 
In addition, no significant trend was found in 
the translation speed of TCs that affected China 
during 1965−2009, suggesting that the increasing 
TC rainfall per TC in China was not due to the 
slowdown of TC movement.  Taiwan experienced a 
dramatic increase in typhoon-related rainfall in the 
beginning of the twenty-first century. Major factors 
include the occurrence of slow-moving TCs and 
their track locations relative to the meso-a-scale 
terrain (Chang et al. 2013). The typhoon rainfall 
shows a statistically significant increase for all 
intensities, while the non-typhoon rainfall exhibits 
a decreasing trend, particularly for lighter rain (Tu 
and Chou 2013). In rainfall intensity, both typhoon 
and non-typhoon rainfall extremes become more 

intense, with an increased rate much greater than 
the Clausius–Clapeyron thermal scaling.

Figure 4.7  Annual rainfall per TC associated with TCs entering 
within a 500 km range of Hong Kong, China from 1961 to 
2018. Thin line represents the year by year statistics, bold 
line represents its five year running mean, and the straight 
line represents its linear fit. The trend is not significant at 
the 5% level.

Li et al. (2015) investigated the influence of TC-
induced rainfall on long-term rainfall variations in 
Hong Kong. Evaluations of the observed trends 
of different rainfall indices suggest that rainfall 
variability in Hong Kong is considerably affected 
by TC rainfall, which has a decreasing trend 
in frequency and intensity in recent decades. 
Removing the TC rainfall from the total rainfall 
reveals that there is an increasing trend in 
daily rainfall frequency and intensity for non-TC 
rainfall in Hong Kong. Moreover, time-dependent 
generalized extreme value analysis of non-TC 
rainfall also shows an increase in the return values 
of the maximum daily rainfall in Hong Kong.  The 
annual rainfall per TC and annual maximum hourly 
rainfall entering within a 500 km range of Hong 
Kong from 1961 to 2017 has a slight decrease but 
without statistical significance at the 5% level (Fig. 
4.7, Lee et al. 2012).  In Macao, there is also no 
statistically significant trend in annual maximum 
precipitation per TC nor in mean total precipitation 
per TC (Fig. 4.8).
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Figure 4.8  Annual maximum precipitation per TC (blue) and 
mean total rainfall (red) per TC in Macau, China from 1970 to 
2017. Thin line represents the year by year values, bold line 
represents its five year running mean, and the straight line 
represents its linear fit. The trend is not significant at the 5% 
level. (Courtesy of SMG)

TC-induced one-day maximum precipitation 
shows a statistically significant increase in the 
Pacific Ocean east of Japan although it does not 
show a significant increase averaged over the 
entire Japanese region (Sato et al. 2012). 

Four climatic subtypes in the Philippines, based 
on climatological monthly precipitation variation, 
have significant increasing trends in TC-induced 
annual precipitation--  16.9%–19.3% decade-1 in 
TC rain percentage contribution during the recent 
15 years (Bagtasa 2017). This trend is probably 
due to changes in TC steering mechanism and 
thermodynamic properties since 2000. One-
day maximum precipitation shows a significant 
decrease in Philippines probably because TC-
induced precipitation does so with insignificant 
change in tracks of TCs (Sato et al. 2012).

The interannual variation in precipitation over 
Indochina over a 33-yr period from 1979–2011 
is analyzed from the view point of the role of 
westward-propagating TCs over the Asian 
monsoon region (Takahashi et al. 2015). Above-
normal precipitation over Indochina occurred 
when enhanced cyclonic circulation with more 
westward-propagating TCs along the monsoon 
trough occurred. 

Statistically significant increasing trends in TC 
rainfall amount (TCRA) and number of days with 
TC daily rainfall ≥50 mm (TC_R50) were observed 

at most stations along the central coastline of 
Vietnam during 1961-2008 (Nguyen-Thi et al. 
2012). For a regional perspective, no statistically 
significant trends were identified in the region north 
of 20˚N, the region 17˚-20˚N, and south of 12˚N, 
while the significant increasing trend was found in 
the region 12˚-17˚N for both of TCRA and TC_R50. 
The results suggest that cause of the increasing 
trend in 12˚-17˚N region can be explained partly by 
TC rainfall, while the decreasing trend in the region 
north of 20˚N is due to Non-TC rainfall. A significant 
increase of TC rainfall was revealed during the 
1990s in the 12˚-17˚N region.  

A case study of the detection and attribution of TC-
rainfall changes mentioned above is discussed in 
Subsection 3.2 j). 

4.4 High winds

For mainland China, both the TC high wind with 
windspeeds ≥ 10.8 m s-1 (TCHW) frequency 
(intensity) and HW frequency (intensity) shows 
a statistically significant downward (weakening) 
trends after the 1980s. The proportion of HW events 
accounted for by TCHW decreased, although the 
trend was not statistically significant (Ni et al 2015). 
The extreme maximum wind in China had the 
highest frequency in the 2000s during the period of 
1949−2009 (Zhao and Wang 2012).

In Hong Kong, China, TC-induced annual 
maximum 10-minute mean wind and maximum 
1-sec gust as recorded at Waglan Island, 
an offshore island about 20 km southeast of 
Hong Kong Observatory Headquarters, have a 
slight decreasing trend which is not statistically 
significant (Fig. 4.9b). However, the maximum 
10-minute wind at Kai Tak (an urban station) has 
a statistically significant decreasing trend from 
1968 to 2018 (Fig. 4.9a). Based on computational 
fluid dynamics simulations, this decrease is likely 
attributed to continuous urban development and 
elevation in building heights (Peng et al. 2018) 
over the past few decades. Data from Macao, 
China show periodic changes on a decadal time 
scale but no statistically significant trends in either 
the annual maximum gust or hourly average 
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maximum wind speed (Fig. 4.10).

Figure 4.11 illustrates a time series of the annual 
average of maximum wind speed of all TCs 
occurring in the emergency zone (EZ; 28-40oN, 
120-132oE) from 1977 to 2018. The largest 
maximum speeds were seen in 1983, resulting 
from Typhoon Forrest. The typhoon intensities 
over the EZ vary by year and a distinct trend is not 
seen from a long-term perspective (Cha and Shin, 
2019). However, Cha et al. (2014) found that the 
number of strong typhoons in Republic of Korea 
with maximum wind speeds exceeding 44 m s-1, 
has a statistically significantly increased over the 
period 2001 to 2010.  Park et al. (2014) reported an 
increase in landfall intensity over east China, Korea 
and Japan as well.  Poleward migration of latitude 
of maximum intensity in the WNP is discussed in 
Subsection 3.2.a) as a case study.

Extreme TCs with high wind speeds in the 
Philippines have become slightly more frequent 
for the period of 1971–2013 (Cinco et al. 2016). 

(a)

(b) 

Figure 4.9  Annual maximum 10 minute mean wind speed and 
gust at (a) Kai Tak and (b) Waglan Island associated with TCs 

entering within a 500 km range of Hong Kong, China from 
1961 to 2018. Thin lines represent the year by year statistics, 
bold lines represent five-year running means, and the 
straight lines represent linear fits. (Courtesy of HKO).

Figure 4.10  Annual maximum gust and hourly average 
maximum wind speed by TCs in Macao, China from 1970 to 
2017. (Courtesy of SMG)

Figure 4.11 Maximum wind speeds during the lifetime of 
influential TCs over the emergency area (28-40˚N, 120-132˚E) 
during the 1977-2018 period. Only TCs with 10-min average 
maximum wind speed of 17 m/s or above at 6-h intervals 
(00, 06, 12, and 18 UTC) were extracted. The years of 1988 
and 2009 were not affected by any TCs. Thus, they were left 
blank. (Courtesy of KMA).

4.5 Storm surge and extreme sea levels

Needham et al. (2015) comprehensively compiled 
global storm surge data sources, observations, 
and impacts, which are archived in the database 
SURGEDAT. The WNP observes the highest rate 
of low-magnitude surges, as the coast of China 
averages 54 surges (≥1 m) per decade, and rates 
are likely higher in the Philippines. 



36

Muis et al. (2016) developed a global reanalysis of 
storm surges and extreme sea levels and showed 
the absolute and relative exposed population to a 
flood with 100-year return period for the 10 most 
exposed countries. Three out of the 14 Members 
of the Typhoon Committee are listed among the 
10 most-exposed countries: China, Vietnam, and 
Japan. China alone accounts for half of the global 
total exposure. 
 
TC-induced storm surges with 50-year return 
period (H50) were developed from an 80-year 
dataset covering 1934 to 2013 (Hatada and 
Shirakami 2016). H50 estimated from the 30-year 
moving window shows no remarkable trend in the 
WNP including most of Japan.

4.6 Casualties and economic losses 

Climatological annual mean damages due to 
tropical cyclones in China include 505 fatalities 
and 5.6 billion USD accounting for 0.4% of annual 
GDP. Although there was little change in the 
overall landfall frequency, landfall intensity and 
overland time, the annual total direct economic 
loss increased significantly presumably due to 
the rapid economic development over the past 
25 years (Zhang et al. 2011).  Chen et al. (2013) 
analyzed TC-induced damages for mainland 
China, including the deaths and missing, affected 
crop area, destroyed houses, and rate of direct 
economic loss. No clear trend in damage from 
individual TCs is found. The annual frequency 
of TCs causing heavy and catastrophic damage 
shows a clear decrease from 1984 to 2008 with no 
trend in the total number of damaging TCs. 

In Hong Kong, China, with continuous investment 
and strengthening of infrastructure and disaster 
risk reduction measures in the city over the past 50 
years, the casualties due to TCs have decreased 
distinctly since 1960s (Figure 4.12). 

Figure 4.12 Number of dead or missing due to tropical 
cyclones in Hong Kong, China over the period 1960 to 2018. 
(Courtesy of HKO)

In Japan, the number of casualties due to TCs has 
a statistically significantly decrease over 90 years 
(Figure 4.13) as infrastructure countermeasures 
have been developed, especially since 1961. 
Ushiyama (2017) analyzed casualties caused by 
storms and floods including TCs in Japan for the 
period of 1968 to 2014. A statistically significant 
decrease in casualties was identified for the 
period. The trend remains the same even after 
1980s, although the damage to houses caused by 
other influences besides storms and floods do not 
show a statistically significant decrease. 

Figure 4.13  Number of dead or missing due to tropical 
cyclones in Japan from 1951 to 2017. (Data source: “White 
Paper on Disaster Management” published by the Cabinet 
Office of the Japanese Government)

In the Republic of Korea, Typhoon Thelma in 
1987 caused 345 casualties, and Typhoon Rusa 
in 2002 caused record-breaking property damage 
for the period since 1900.  However, there is a 
decreasing trend in typhoon-induced damage, 
including casualties and economic loss, since 
2000 (Cha and Shin 2019). 
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Normalized cost of damages caused by TCs 
has increased in the Philippines since 1971 
while there were no statistically significant 
trends reported in the frequency, intensity and 
landfall of TCs, (Cinco et al. 2016). Therefore, 
this increasing trend in the costs is presumably 
due to socio-economic factors such as land use 
practices, living standards and policy responses. 
Typhoon Haiyan in 2013 caused historic record-
breaking damages with socio-economical cost of 
2 billion USD due to a devastating storm surge 
(Lagmay et al. 2015), with the cost of damages 
reaching twice the level of the second largest 
damage event in the historical record. A large 
number of TC fatalities occur in neglected low 
income regions such as those destroyed by Super 
Typhoon Haiyan, as inferred from an examination 
of 40-years of Australian tropical cyclone reports 
(Seo 2014). 

4.7  Summary

4.7.1  Frequency and intensity of landfalling 
and affecting tropical cyclones

 

Frequencies of both landfalling and affecting TCs 
show no significant trends for China, the vicinity 
of Hong Kong, China and Macau, China, Japan 
(TC or above), the Philippines, and the Korean 
Peninsula.
 
The intensities of TCs landfalling over east 
China and Japan have significantly increased, 
but those for Vietnam, south China, Taiwan, and 
the Philippines, have not changed significantly. 
This regional contrast is consistent with the 
pronounced poleward migration in the average 
latitude where the TCs have reached their lifetime 
maximum intensity.

4.7.2  Tropical cyclone induced precipitation
 

Significant increases in TC-induced precipitation 
vary with time-scale and area, but include: annual 
maximum daily precipitation in Japan, annual 

precipitation in the Philippines and the central 
coastline of Vietnam, and the annual number of 
days with TC-induced daily precipitation ≥50 mm 
in the central coastline of Vietnam. 

Annual TC-induced precipitation varies by region 
in China and on a decadal time scale. Average 
precipitation per TC has significantly increased in 
southeast China, but apparently not because of 
a slowdown of TC movement. Annual TC-induced 
precipitation in Hong Kong, China affects the total 
precipitation amount and interannual variability, 
and non-TC-induced daily precipitation has an 
increasing trend.

4.7.3  High winds
 

A significant weakening trend in high winds 
is observed in mainland China. The impact of 
typhoon intensities over Republic of Korea varies 
by year, but with no significant long-term trend 
over the period examined. 
  

4.7.4 Storm surge and extreme sea levels
 

The highest climatological rates of low-magnitude 
surges are experienced in China and the 
Philippines. Three countries out of the 14 Members 
of the Typhoon Committee (China, Vietnam, and 
Japan) are listed among the 10 with the most 
exposure to a 100-year return period flood when 
the absolute and relative exposed population to 
a 100-year return period flood is estimated.  One 
study suggested that TC-induced storm surges 
with a 50-year return period have no significant 
trend in the WNP. 

4.7.5 Casualties and economic losses

TC-induced annual total direct economic losses 
have significantly increased in China and the 
Philippines due to rapid economic development.  
By using a comprehensive assessment index, one 
study reviewed that the averaged damages per TC 



38

in China (including the dead and missing, affected 
crop area, destroyed houses, and rate of direct 
economic loss) does not show a clear trend.  In 
Japan and Hong Kong, China , there is significant 
reduction in TC-related casualties in the past few 
decades, mainly attributed to improvements in 
infrastructure and disaster prevention measures. 
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Future Projections

5.1 Introduction

Future changes of TC activity with climate 
change is a big concern due to the large 
influences of TC on coastal communities 

around the world, especially in the Asia Pacific 
region. A number of studies investigating the 
potential changes in TC activity based on 
dynamical models and diagnostic approaches 
have been carried out, in particular focusing on the 
potential influence of anthropogenic greenhouse 
gas-induced global warming on TC genesis, 
intensity, and rainfall. In recent years, many 
higher resolution dynamical modeling studies 
have explored future changes in TCs activity 
and confidence of these findings is enhanced by 
comparison with other higher resolution model 
experiments.

This chapter summarizes the key findings in the 
literature review, mainly for studies published 
since the previous assessment in 2012.  We focus 
on the late 21st century projections of TCs activity 
over the WNP, including TC frequency, intensity, 
precipitation rate, shift in track pattern and storm 
surge risk.  To adjust results from multiple studies 
to a common future climate change scenario for 
our figures, we have rescaled model results to a 
global surface temperature change of 2 degrees 
Celsius before inclusion in the figures, following 
Knutson et al. (2019). 

5.2 Frequency

Recent studies published since 2012 on the 
projections of TC genesis/frequency using 
higher resolution dynamical models have mostly 
suggested a reduction of TC numbers, but an 
increase in intense TC numbers over the WNP 
in the future.  However, there are still individual 
studies that projected an increase in TC frequency 
or a decrease in intense TC numbers. Specific 
results of model experiments are summarized 

below.

Ogata et al. (2016) found that changes of intense 
TC frequency are not robust to ocean model 
treatment.  By comparing a coupled atmosphere-
ocean general circulation model (AOGCM) and 
atmosphere-only model (AGCM) they found that 
future climate TC projections are not robust in 
the region bounded by 120−160°E and 25−40°N 
because of its large internal variability. However, 
both models showed a significant decrease 
in TC frequency and increase in intense TC 
frequency in the region bounded by 120−160°E 
and 10−25°N. Sugi et al. (2016) reported that the 
projected changes in the frequency of very intense 
(Category (Cat.) 4−5, Vmax ≥ 59ms-1) TCs are not 
uniform over the globe. The frequency is projected 
to increase in most regions but decrease in the 
southwestern part of the WNP.  Tang and Camargo 
(2014) used a ventilation index as a metric to 
assess possible changes in TC frequency in the 
Climate Model Intercomparison Project Phase 
5 (CMIP5) models. They suggested that by the 
end of the 21st century there will be an increase 
in the seasonal ventilation index, implying less 
favorable conditions for TC genesis or rapid 
intensification in the majority of the TC basins. 
Murakami et al. (2012a) investigated uncertainties 
in projected future changes in TC activity using 
future (2075−2099) ensemble global warming 
projections under the Intergovernmental Panel 
on Climate Change (IPCC) A1B scenario. Their 
ensemble experiments were performed using three 
different cumulus convection schemes and four 
different assumptions for prescribed future SST 
patterns. All experiments consistently projected 
reductions in global and WNP TC frequency. 
But TC frequency of occurrence (TCF) and TC 
genesis frequency (TGF) increased in the central 
Pacific. These results implied that differences 
in SST spatial patterns can cause substantial 
variations and uncertainties in projected future 
changes of TGF and TC numbers at ocean-basin 
scales (Murakami et al. 2012).  

Christensen et al. (2013) provided a synthesis 
of global and regional projections of future TC 
climatology by 2081-2100 relative to 2000-
2019. Globally, their consensus projection is 
for decreases in TC numbers by approximately 
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5-30%, and increases in the frequency of 
categories 4 and 5 storms by 0-25%. An update of 
these projections based on more recent studies is 
given in Knutson et al. (2019).  

Camargo et al. (2014) concluded that many 
genesis indices developed for the present 
climatology are not able to capture the reduction 
of global TC activity in a warmer climate, at 
least within the context of the Geophysical Fluid 
Dynamics Laboratory (GFDL) HiRAM (High 
Resolution Atmospheric Model). They tried to 
gain further insights into the reasons for the 
global mean decrease in TC number in the model 
under SST changes derived from greenhouse 
gas−forced warming scenarios. Their results 
suggested a reduction in global TC frequency in 
warmer climates simulated by GFDL HiRAM is 
attributable to the increasing saturation deficit, 
as temperature increases while relative humidity 
stays close to constant. This effect is partially 
offset by increases in potential intensity (PI), 
which reduces the magnitude of the decrease in 
TC frequency. 

With a view to studying the impact of model 
resolution on high-impact climate features such as 
TCs, Roberts et al. (2015) simulated 27 years of 
global TC activity for both the present climate and 
an end-of-century future climate, at resolutions 
(grid-spacing) of N96 (130 km), N216 (60 km), 
and N512 (25 km). In the future climate ensemble, 
there is a slight decrease in the frequency of 
TCs in the Northern Hemisphere and a shift in 
the Pacific with peak intensities becoming more 
common in the Central Pacific. There is also a 
change in TC intensities, with the future climate 
having fewer weak storms and proportionally 
more stronger storms.  Manganello et al. (2014) 
investigated future changes in the WNP TC 
activity projected by the multidecadal simulations 
with the European Centre for Medium-Range 
Weather Forecasts (ECMWF) Integrated Forecast 
System (IFS) at 16-km and 125-km grid spacing.  
They found that, for the simulations by the higher-
resolution version of the IFS there is a significant 
increase in the frequency of typhoons and very 
intense (Cat. 3-5) typhoons which is accompanied 
by a corresponding reduction in the frequency of 
weaker storms.  

Knutson et al. (2015) adopted a regional 
nested dynamical downscaling approach to 
investigate the response of TCs to a climate 
change scenario obtained from a multi-model 
ensemble of CMIP5 models (the Representative 
Concentration Pathway 4.5 (RCP4.5) scenario) 
in all basins. The features of the late-twenty-first-
century projected changes include a substantial 
reduction in global TC frequency (−16%), but an 
increase in the frequency of the most intense 
storms (+24% for cat 4−5 and +59% for TC with 
maximum winds exceeding 65m s-1) in the WNP.  
Murakami et al. (2014) examined 25-yr present-
day simulations and future projections for the last 
quarter of twenty-first century obtained from 10 
Meteorological Research Institute (MRI) AGCMs 
under the A1B scenario and 11 CMIP5 models 
under the RCP4.5 and RCP8.5 scenarios using 
in each case a pair of simulations (a present day 
simulation (1979–2003) and a global-warmed 
future projection (2075–99)). Overall, the models 
projected statistically significant decreases in 
basin-total frequency of occurrence of TCs and 
TC genesis frequencies globally (by 15%–29% 
for A1B; by 6%–23% for RCP4.5; and by 13%–
40% for RCP8.5). Tsou et al. (2016) simulated 
tropical storm (TS) activity using a HiRAM at 
20-km resolution over the WNP and Taiwan/
East Coast of China (TWCN) at the present time 
(1979 – 2003) and future climate (2075 – 2099) 
under the RCP 8.5 scenario. During 2075 - 2099, 
both TS genesis numbers and TS frequency over 
the WNP and TWCN are projected to decrease 
consistent with the IPCC 5th Assessment Report 
(AR5). However, the rate of decrease (49%) is 
much greater than that projected in IPCC AR5. 

Tory et al. (2013a) examined changes in TC 
frequency under anthropogenic climate change 
using an Okubo−Weiss−Zeta parameter (OWZP) 
TC-detection method with a selection of CIMP3 
models. They reported a global reduction of 
TCs between about 6% and 20%, with a much 
larger spread of results (about +20% to −50%) 
in individual basins.  Further study by Tory et al. 
(2013b) using CIMP5 models reported that the 
eight models with a reasonable TC climatology 
all projected decreases in global TC frequency 
varying between 7% and 28%. 
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Wu et al. (2014) simulated present-day (1980-
2008) and projected (late twenty-first century; 
CMIP3 A1B scenario) TC activity in the WNP 
using an 18-km-grid GFDL regional atmospheric 
model. The model simulations suggested a weak 
tendency for decreases (7%) in the number of 
WNP TCs and for increases in the more intense 
TCs.  Regionally, the simulations projected an 
increase in TC activity north of Taiwan, which 
would imply an increase in TCs making landfall in 
northern China, the Korean Peninsula, and Japan. 

Yamada et al. (2017) simulated TCs under 
present-day and warmer climate condition using 
a version of NICAM (Nonhydrostatic Icosahedral 
Atmospheric Model).  Future changes in TC activity 
and structure were investigated using the output 
of a 14-km mesh climate simulation. The model 
projected that a decrease in the global frequency 
of TCs by 22.7% (a decrease of 11.2% in the 
WNP) under warmer climate conditions. Satoh 
et al. (2015) further investigated the mechanisms 
for the reduction in the global frequency of TCs 
under global warming. Simulation results obtained 
by using the 14 km mesh global non-hydrostatic 
model (NICAM) showed that the reduction in the 
global frequency of TCs is much larger than that of 
the total tropical convective mass flux. This study 
suggested the importance of the changes in the 
intensities of TCs to constrain the future changes 
of TC frequency. 

Mori et al. (2013) performed ensemble numerical 
experiments of near-future projections in the 
WNP targeted for the period of 2016 - 2035 by 
using three versions of the coupled atmosphere-
ocean global climate model, the Model for 
Interdisciplinary Research on Climate (MIROC). 
Near-future projections (2016 - 2035) indicated 
significant reductions (approximately 14%) in TC 
number, especially over the western part of the 
WNP, even under scenarios with less prominent 
global warming than that at the end of this century. 
Zhang and Wang (2017) studied the late twenty-
first-century changes of tropical cyclone activity 
over the WNP under global warming conditions 
using WRF-ARW with an improved cumulus 
parameterization scheme.  Future projections 
under the RCP4.5 and RCP8.5 scenarios 
suggested an overall reduction of TC genesis 

frequency over the western part of the WNP. 
Similar changes are found for the frequency of TC 
occurrence and the accumulated cyclone energy 
(ACE).  

In contrast to other studies which generally project 
a reduction in TC frequency in WNP, by applying a 
statistical/dynamical tropical cyclone downscaling 
technique to six CMIP5 global climate models 
running under historical conditions and under 
RCP8.5 scenario, Emanuel (2013) projected a 
large increase in global TC activity, most evident in 
the North Pacific region. But this result for CMIP5 
models contrasts with that of applying the same 
downscaling technique to CMIP3 models which 
generally predicted a small decrease of global TC 
frequency.  

Moreover, Park et al. (2017) showed that an 
ensemble mean of CMIP5 models projects an 
increase in TC activity in the WNP under RCP8.5 
scenario, which is due to enhanced subtropical 
deep convection and favorable dynamic conditions 
therein in conjunction with the expansion of the 
tropics.  Zhang et al. (2017) also found that, under 
global warming, the TC-track density and PDI 
both exhibited robust and significant increasing 
trends over the North Pacific basin, especially 
over the central subtropical Pacific, and the 
positive trends are more significant in the RCP8.5 
experiments than in the RCP4.5 experiments. The 
increase in North Pacific TCs is primarily manifest 
as increases in both the intense and the relatively 
weak TCs, whereas there is only a slight increase 
in the number of moderate TCs.

5.3  Intensity

Most TC intensity projections using relatively 
high resolution models (60 km grid or finer) 
agree on an increase in the intensity of strong 
TCs by the late 21st century in response to 
projected 21st century warming. Tsuboki et al. 
(2015) addressed the problem of to what extent 
the intensity of super typhoons will change in the 
globally warmed climate of the late 21st century 
by re-simulating a series of historical cases using 
altered environmental conditions. High resolution 
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downscale experiments using the 20 km mesh 
MRI-AGCM for the twelve super typhoons revealed 
that the super typhoons for the present climate 
simulation attained an average central pressure 
of 877 hPa and an average maximum surface 
wind speed of 74 ms-1. The super typhoons under 
warmer climate conditions attained average wind 
speeds of 88 ms-1 and minimum central pressures 
of 857 hPa.  

Mei et al. (2015) provided a statistical projection 
using an observation-based regression model that 
considers both the effects of SST and subsurface 
stratification and found that upper ocean 
temperatures in the low-latitude northwestern 
Pacific (LLNWP) and SSTs in the central 
equatorial Pacific control the seasonal average 
lifetime peak intensity by setting the rate and 
duration of typhoon intensification, respectively. 
Continued LLNWP upper-ocean warming as 
predicted under a moderate (RCP4.5 scenario) is 
expected to further increase the average typhoon 
intensity by an additional 14% by 2100.  Knutson 
et al. (2015) examined the CMIP5 multimodel 
ensemble (RCP4.5 scenario) using a combination 
of atmosphere-only global models regional 
dynamical downscaling of individual storms for 
present-day and warm climate conditions.  Their 
simulations projected an increase in average 
TC intensity and in the number and occurrence 
days of very intense category 4 and 5 storms, 
both globally and in the WNP.  Tsou et al. (2016) 
adopted a High Resolution Atmospheric Model 
(HiRAM) to 20-km grid-spacing and simulated 
TCs in a future climate projection (2075–2099) 
under the RCP8.5 scenario. Their simulations 
projected that TS intensity will increase under 
global warming scenario in 2075–2099. 

Christensen et al. (2013) provided a synthesis of 
then-available global and regional projections of 
future TC climatology by 2081–2100 relative to 
2000–2019, for a mid-range A1B-like scenario. 
Globally, the consensus projection was for 
increases in the frequency of categories 4 and 
5 storms by 0–25%, and an increase of a few 
percent in typical lifetime maximum intensity. Wu 
et al. (2014) simulated present-day (1980-2008) 
and projected (late twenty-first century; CMIP3 
A1B scenario) WNP TC activity using an 18-km-

grid GFDL regional atmospheric model. The 
model’s TC activity showed a weak tendency for 
increases in the more intense WNP TCs. Averaged 
ACE of individual events is expected to increase 
5.6%, and the model projected enhancements 
of the mean TC intensity for both lifetime-mean 
maximum wind speeds (1.4% increase) and 
lifetime-maximum wind speed (2.6% increase).  

Yamada et al. (2017) simulated TCs under present-
day and warmer climate condition using a version 
of NICAM. Future changes in TC activity and 
structure from a 14-km mesh climate simulation 
projected that the ratio of intense TCs increases 
by 6.6% (increases by 17.8% in the WNP) under 
warmer climate conditions. The study conducted 
by Manganello et al. (2014) suggested that, for 
the higher-resolution version of the IFS model 
simulations, the frequency of typhoons and very 
intense ( Cat. 3-5) typhoons increases significantly 
in the future climate scenario and this change is 
accompanied by a reduction in the frequency of 
weaker storms.  

Using Super Typhoon Haiyan (2013) as a case 
study, Nakamura et al. (2016) explored potential 
future typhoon intensity and storm surges around 
the islands of Samar and Leyte in the Philippines, 
taking into account monthly mean sea surface 
temperatures (SST), atmospheric air temperature 
(AAT), and relative humidity (RH) from MIROC5 
according to four RCP scenarios proposed by 
IPCC AR5.  The numerical simulations indicated 
that, if climate change is considered to only 
increase SST, typhoon intensity and storm surge 
will be larger than under the present climate. The 
minimum sea-level pressure (MSLP) of the future 
typhoon under scenario RCP 8.5 SST change 
would be about 21 hPa lower and the storm 
surge 2.7 m higher than in the present climate.  
However, if SST, AAT, and RH are all taken into 
account, which is a more physically plausible 
scenario, then the increase in typhoon intensity 
will not be as marked as for the SST change alone, 
with the MSLP under RCP 8.5 decreasing by 13 
hPa and the storm surge increasing by 0.7 m. 
The results of this study confirmed earlier studies 
that, while increases in SSTs can contribute to 
the intensification of future typhoons, when other 
associated environmental changes (increases in 
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AAT and RH) are included, the intensification of 
TCs is moderated compared to the case of SST 
warming in isolation. 

5.4  Precipitation Rates

Kanada et al. (2013) studied composite patterns of 
hourly TC-related precipitation projected by 20 km 
mesh MRI-AGCM and 2 km mesh Non-Hydrostatic 
Model NHM2 in the present-day and future climate. 
The radii of azimuthally averaged maximum 
precipitation is smaller in the future climate 
than in the present-day climate, and the hourly 
precipitation exceeding 50mm h-1 is concentrated 
in a narrow region within a radius of 60km in 
the future climate. In addition, their simulations 
included spirally elongated precipitation patterns 
exceeding 10mm h-1 south of the TC center 
in the future climate.  As projected by a CMIP5 
13-model ensemble under the RCP4.5 scenario, 
Knutson et al. (2015) reported a pronounced 
increase in TC precipitation rates in the warmer 
climate. A physical mechanism suggested by 
the results is that enhanced tropospheric water 
vapor in the warmer climate enhances moisture 
convergence and thus rainfall rates. Villarini el al. 
(2014) simulated an increase in TC rainfall rates 
on the order of 10-20% globally in response to a 
uniform increase of 2K in SST (both alone and 
in combination with CO2 doubling) using a set 
of idealized high-resolution atmospheric model 
experiments. 

Tsou et al. (2016) performed experiments with a 
20-km grid version of the HiRAM model for the 
present climate (1979−2003) and future climate 
(2075−2099) under the RCP8.5 scenario. The 
mean precipitation rate within 200km of the storm 
center at LMI time (LMI; the maximum intensity 
achieved during a storm’s lifetime) over the WNP 
at the end of the 21st century is projected to 
increase by 22%. The projected change around 
Taiwan and East Coast of China is even larger, 
with a projected increase of 54%.  Yamada et 
al. (2017) projected changes in TC activity and 
structure under present-day versus warmer 
climate condition using a 14-km mesh climate 
simulation of the NICAM. The precipitation rate 

within 100km of the TC center increased by 11.8% 
under warmer climate conditions.  

Utsumi et al (2016) analyzed the relative 
contributions of different weather systems (i.e., 
TCs, extratropical cyclones including fronts, 
and others) to changes in annual mean and 
extreme precipitation in the late 21st century using 
multimodel projections of CMIP5.  According to 
the models, total precipitation from TCs decreases 
(increases) in the tropics (subtropics). An increase 
in rainfall rates associated with TCs is a common 
response of numerical models under greenhouse 
warming (Knutson et al., 2013; Kim et al., 2014; 
Villarini et al., 2014). Projected increases in TC 
rainfall typically range from 5 to 20%, although 
results can vary somewhat between different 
TC basins (Knutson et al. 2015). In addition, 
the quantitative changes will also depend on 
the details of the TC precipitation metric chosen 
and on the particular future emission scenario 
assumed. 

5.5 Shifts in Activity/Track Pattern and 
Landfalling

Using a high-resolution global climate model for a 
suite of future warming experiments (2075–2099), 
Murakami et al. (2013) projected an increase 
in future TC occurrence around the Hawaiian 
Islands.  They concluded that the substantial 
increase in the likelihood of TC frequency is 
primarily associated with a northwestward shift of 
TC tracks over the ocean southeast of the islands.

Wu et al. (2014) simulated present-day (1980-
2008) and projected (late twenty-first century; 
CMIP3 A1B scenario) WNP TC activity using 
an 18-km-grid regional atmospheric model and 
reported a weak (80% significance level) tendency 
for projected WNP TC activity to shift poleward 
under global warming. Lok and Chan (2017) 
simulated the number of TCs making landfall in 
South China using a nested regional climate/
mesoscale modelling system and projected a 
northward migration of TC activity in the WNP 
throughout the twenty-first century. Their study 
also projected fewer but more intense landfalling 
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TCs in South China for the late twenty-first 
century.  Projections of WNP TCs simulated by, 
and downscaled from, an ensemble of numerical 
models from CMIP5 by Kossin et al., (2016) 
showed a continuing poleward migration over the 
twenty-first century following the projections under 
RCP8.5. The projected migration causes a shift in 
regional TC exposure that is very similar in pattern 
and relative amplitude to the past observed shift 
which is robust in the WNP Ocean.  

Colbert et al. (2015) explored the impact of natural 
and anthropogenic climate change on TC tracks 
in the WNP using a beta and advection model 
(BAM). The BAM captured many of the observed 
changes in TC tracks due to El Niño–Southern 
Oscillation (ENSO). Potential changes in TC 
tracks over the WNP due to anthropogenic climate 
change were also assessed for 17 CMIP3 models 
and 26 CMIP5 models. Statistically significant 
decreases (by 4 - 6% in westward moving TCs) 
and increases (5 - 7% in re-curving ocean TCs) 
were found.  Manganello et al. (2014) investigated 
future changes in the WNP TC activity projected 
by the multidecadal simulations with the ECMWF 
IFS at 16-km and 125-km grid spacing. The 
high-resolution version of the IFS projected 
that in a future climate scenario, a southward 
(southwestward) shift of the main genesis regions 
takes place in the T1279 (T159) IFS, with a smaller 
and less significant increase in the genesis density 
over the South China Sea.  These changes are 
consistent with a small change in the basinwide 
seasonal mean TC frequency in both models. 

Wang and Wu (2015) assessed the future track and 
intensity changes of TCs based on the projected 
large-scale environment in the 21st century from 
a selection of nine CMIP5 climate models under 
RCP4.5 scenario.  The projected changes in 
mean steering flows suggested a decrease in the 
occurrence of TCs over the South China Sea area 
with an increase in the number of TCs taking a 
northwestward track. There are also considerable 
inter-model variability in depicting the changes in 
prevailing tracks and their contribution to basin-
wide intensity change.  Nakamura et al. (2017) 
analyzed the WNP TC model tracks in two large 
multimodel ensembles and identified two potential 
changes in track types in a warming climate. The 

first is a statistically significant increase in the 
north-south expansion, which can also be viewed 
as a poleward shift, as TC tracks are prevented 
from expanding equatorward due to the weak 
Coriolis force near the equator. The second 
change is an eastward shift in the storm tracks 
that occurs near the central Pacific, indicating 
a possible increase in the occurrence of storms 
near Hawaii in a warming climate. 

5.6  Sea Level Rise and Storm Surge

Sea level rise and TC induced storm surge can 
cause extreme economic damage and loss of 
life.  Mase et al. (2013) and Yasuda et al. (2014) 
explored future storm surge risk in East Asia using 
the results of MRI-AGCM to directly force a storm 
surge simulation model. The simulation suggested 
that there will be slight change in the location of 
severe storm surges in the Yellow Sea, moving 
from Bohai Bay to the Shandong Peninsula. 
The East China Sea will remain as a vulnerable 
area because quite a number of intense TCs 
pass through it in the future climate.  Neumann 
et al. (2015) assessed future population change 
in the low-elevation coastal zone and trends in 
exposure to 100-year coastal floods based on four 
different sea-level and socio-economic scenarios 
and showed that the number of people living in 
the low-elevation coastal zone, as well as the 
number of people exposed to flooding from 1-in-
100 year storm surge events, is highest in Asia.  
China, India, Bangladesh, Indonesia and Viet 
Nam were estimated to have the highest total 
coastal population exposure in the baseline year 
and this ranking was expected to remain largely 
unchanged in the future.  Hoshino et al. (2016) 
explored inundation risk in different areas of 
Japan due to the impacts of future sea level rise 
and increase in the intensity of TCs and found that 
the level of defenses around many areas of Tokyo 
Bay could be inadequate by the end of the 21st 
century.  

Vitousek et al. (2017) used extreme value theory 
to combine sea-level projections with wave, tide, 
and storm surge models to estimate increases 
in coastal flooding on a continuous global scale.  
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They found that regions with limited water-level 
variability, i.e., short-tailed flood-level distributions, 
located mainly in the Tropics, will experience the 
largest increases in flooding frequency.  They 
concluded that the 10 to 20 cm of sea-level rise 
expected no later than 2050 will more than double 
the frequency of extreme water-level events in 
the Tropics, impairing the developing economies 
of equatorial coastal cities and the habitability 
of low-lying Pacific island nations.  The review 
by Woodruff et al. (2013) also highlighted that, 
although sea level rise rates, storm intensification, 
and time periods differ among previous studies, 
the general consensus is for an increase in 
future extreme flood elevations.  They concluded 
that increasing rates of sea level rise will cause 
increased flooding by TCs, and that future storm 
damage will be greatest not where TC activity 
is the highest, but rather where rapidly evolving 
coastlines and increasing coastal populations 
greatly enhance storm impacts.  

Lloyd et al. (2016) explored the influences of 
climate change-associated sea-level rise and 
socioeconomic development on future storm 
surge mortality using a statistical global-level 
storm surge mortality risk model under the A1B 
scenario.  They suggested that climate change 
is expected to increase storm surge mortality, 
with the impacts concentrated in regions such 
as South and South-East Asia.  However, given 
the lack of model validation and the unreliability 
of the mortality estimates, they pointed out that 
the projections are best interpreted qualitatively.  
Moreover, the plausible increase in TC induced 
extreme wind waves due to the projected increase 
in TC intensity may further aggravate the impacts 
of storm surge and sea level rise on coastal 
structures (Timmermans et al., 2017, 2018).

5.7  Casualties and Economic Losses

Ranson et al. (2014) assessed existing studies 
of future tropical and extratropical cyclone 
damages under climate change, where they 
considered monetary damages and unmonetized 
“loss potential” damages, but excluded mortality. 
They formed an ensemble of 478 estimates of 

temperature-damage relationships from existing 
studies, and estimated a probability distribution 
for depended of future storm damages on 
atmospheric temperatures.  Their framework 
suggested that a 2.5°C increase in global surface 
air temperature would lead to a 28% increase in 
TC damages in the WNP.  Gettelman et al. (2017) 
projected future TC damage with a high resolution 
global climate model (CLIMADA) in the different 
regions (America, East Asia and Indian).  The East 
Asia region is expected to see a large increase in 
storm damage with future storms. 

5.8 Assessment for the WNP by a WMO 
Task Team on TCs and Climate Change 

A WMO Task Team on Tropical Cyclones and 
Climate Change (WMO Task Team) has recently 
conducted an assessment of tropical cyclones 
and climate change similar to our assessment for 
the WNP, but from a global perspective (Knutson 
et al., 2019).  However, in conducting their global 
assessment, the WMO Task Team also prepared 
some regional TC/climate change assessment 
statements and summaries for the WNP basin.  
For TC projections, in addition to attempting to 
establish the sign of future change compared to 
present-day, the WMO Task Team also presented 
quantitative ranges of projected changes.  For 
this product, they rescaled the raw projections 
from studies that used different climate change 
scenarios (e.g., IPCC A1B, RCP4.5, RCP8.5) to 
be roughly compatible with a 2oC anthropogenic 
global warming scenario.  For context, they noted 
that CMIP5 models on average project a global 
mean surface temperature warming, relative 
to the 1986-2005 mean, of 2oC by around year 
2055 under the RCP8.5 scenario, while IPCC 
AR5 concludes with medium confidence that 21st 
century global warming will remain below 2oC for 
the RCP2.6 scenario (IPCC, 2013).  

Overall, they concluded that a 2oC anthropogenic 
global warming is projected to impact TC activity 
at the global level as follows: 
i) The most confident TC-related projection is 

that sea level rise accompanying the warming 
will lead to higher storm inundation levels, 
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assuming all other factors are unchanged. 
ii) For TC precipitation rates, there is at least 

medium-to-high confidence in an increase 
globally, with a median projected increase of 
14% (range 6-22%). 

iii) For TC intensity, there is at least medium-to-
high confidence that the global average will 
increase. The median projected increase in 
lifetime maximum surface wind speeds is 
about 5% (range 1-10%). 

iv) For the global proportion of TCs that reach 
very intense (Cat. 4–5) levels, there is at least 
medium-to-high confidence in an increase, 
with a median projected change of +13%.  

Confidence level is relatively lower for the following 
three projections: 

v) a further poleward expansion of the latitude 
of maximum TC intensity in the WNP; 

vi) a decrease of global TC frequency, although 
this is projected in most current studies; and 

vii) a global increase in very intense TC frequency 
(Cat. 4–5), as is seen most prominently in 
higher resolution models.

In our current assessment for the WNP, the 
Typhoon Committee Expert Team also estimated 
the projected changes of several key TC metrics 
in the WNP basin under a 2oC anthropogenic 
global warming scenario.  For this purpose, we 
used the approach and relevant data from the 
assessment of Knutson et al (2019) as well as 
a few additional relevant studies for the WNP 
region.  Our quantitative estimates of the projected 
changes for TC frequency, TC intensity, frequency/
proportion of very intense (Cat.4-5) TCs, and TC 
precipitation rates for the WNP are summarized in 
Tables 5.1 to 5.5 and Figure 5.1.

The projections of these metrics for WNP are 
generally quite consistent with the corresponding 
assessment for the WNP contained in the WMO 
Task Team report (Knutson et al. 2019).  Further 
details of the projections based on the 2oC 
warming assessment for WNP are summarized 
below :

(a) TC Frequency
Among the 140 estimates for the WNP, the median 

change of TC frequency is about – 10% with a 10th 
– 90th percentile range of -26 % to +11%.  

(b) TC Intensity
The median change of TC intensity across the 26 
estimates for the WNP is about +5% with a 10th – 
90th percentile range of +2% to +9% with a large 
majority of models projecting an increase in the 
TC intensity.

(c) Frequency and proportion of very intense TCs 
(Cat.4-5)
The median change in Cat. 4-5 TC frequency 
across the 37 estimates in the WNP is about 0 % 
with a rather large 10th – 90th percentile range of 
-24% to +50%.  This suggests no clear tendency 
of change in very intense TC frequency when 
compared with the overall TC frequency in (a).  As 
pointed out by Knutson et al (2019), most of the 
decreased very intense TC frequency projections 
are from relatively coarse resolution models.   We 
also examined the change in proportion of very 
intense TCs, which removes the influence of 
the overall decrease in TC frequency.  Available 
model projections across 37 estimates suggest 
that there is a clear tendency of increase with a 
median change of about + 10%, and a 10th to 90th 
percentile range of -2 to +29%.   This generally 
agrees with the global findings for this metric by 
the WMO Task Team (global projected change of 
about +13%), but with slightly more uncertainty 
regarding the sign of change.

(d) TC precipitation 
Among the 16 estimates for the WNP, the median 
change is about + 17% with a 10th – 90th percentile 
range of +6 % to +24%.  All estimates are positive, 
indicating a robust tendency for an increase in TC 
precipitation rates.

5.9 Conclusions 

This chapter summarizes the findings of the 
projected changes in TC activity under global 
warming scenarios based on numerical model and 
statistical studies.  Most of the results of this report 
are generally consistent with those published in 
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TCAR 2012 and the latest global assessment 
conducted by the WMO Task Team.  In particular, 
this assessment estimated the projected changes 
of key TC metrics (TC frequency, intensity, 
frequency of very intense TCs, proportion of very 
intense TCs and precipitation rates) for a 2oC 
anthropogenic global warming scenario for the 
WNP using the approach and relevant data from 
the assessment of the WMO Expert Team and 
other study findings for this region.

For projections of TC genesis/frequency, recent 
studies using higher resolution dynamical models 
mostly suggest a reduction of TC numbers, but an 
increase in the proportion of very intense TCs over 
the WNP in the future.  However, some individual 
studies project an increase in WNP TC frequency.  
Most studies agree on a projected increase 
of WNP TC intensity over the 21st century in 
response to projected 21st century anthropogenic 

warming.  All available projections for TC related 
precipitation in the WNP indicate an increase in TC 
related precipitation rate in a climate warmed by 
anthropogenic forcings.  Anthropogenic warming 
may also lead to changes in TC prevailing 
tracks.  Climate models continue to predict future 
increases in sea level rise which will contribute 
toward increased coastal inundation levels, all 
other factors assumed equal.  A further increase 
in storm surge risk may result from increases in 
TC intensity.  However, some studies suggest a 
decrease in TC frequency in the WNP over the 
twenty-first century, which could contribute toward 
decreasing surge risk, assuming all other factors 
equal.  The most confident aspect of change in 
storm inundation risk comes from the highly 
confident expectation of further sea level rise, 
which would exacerbate storm inundation risk, 
assuming all other factors equal.  

Figure 5.1. Summary distributions for the WNP of projected changes in (a) TC frequency, (b) TC intensity, (c) frequency of very 
intense TCs (Cat. 4-5), (d) Proportion of very intense TCs (Cat. 4-5) and (e) TC precipitation. The table below the diagrams gives 
the values of the box and whisker plots. 
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Table 5.1 Summary of projected changes in WNP TC frequency (based on storms of Tropical Storm or 
greater intensity).  All projections have been rescaled to be consistent with a global mean temperature 
change of +2oC. Type of ocean coupling for the study is indicated by the following Model/Type:  [1] no 
ocean coupling (e.g., specified sea surface temperatures or statistical downscaling of tropical cyclones; [2] 
fully coupled ocean experiment; or [3] hybrid type, with uncoupled atmospheric model for storm genesis, 
but with ocean coupling for the dynamical or statistical/dynamical downscaling step. The frequency 
projections from Emanuel et al. (2008) have been computed slightly differently from those shown in Fig. 8 
of the original paper in order to facilitate intercomparison with projection results from other studies.  

Study 
reference Model/Type Resolution Experiment WNP 

(Global) [%]
Sugi et al. 
(2002)

JMA Timeslice [1]
T106 L21 
(~120km)

10y 1xCO2, 2xCO2
-41.25 
(-21.25)

McDonald et al. 
(2005)

HadAM3 Timeslice [1]
N144 L30 
(~100km)

15y IS95a
1979-1994 
2082-2097

-20 (-4)

Hasegawa and 
Emori (2005) 

CCSR/NIES/FRCAGCM 
timeslice [1]

T106 L56 
(~120km)

5x20y at 1xCO2, 7x20y at 
2xCO2

-2.5

Oouchi et al. 
(2006) 

MRI/JMA Timeslice [1]
TL959 L60 
(~20km)

10y A1B, 1982-1993, 2080-
2099

-28.68 
(-22.64)

Stowasser et 
al. (2007)

IPRC Regional [1]  
Downscale NCAR CCSM2, 
6xCO2 

8.44

Bengtsson et 
al. (2007) 

ECHAM5 timeslice [1]
T213 (~60 
km)

2071-2100, A1B -15.09

Bengtsson et 
al. (2007) 

ECHAM5 timeslice [1]
T319 (~40 
km)

2071-2100, A1B -21.13

Emanuel et al. 
(2008)

Statistical-deterministic  
[3]

---
Downscale 7 CMIP3 mods.: 
A1B, 2180-2200

3.57 (-4.17)

Gualdi et al. 
(2008) 

SINTEX-G coupled 
model [2]

T106 (~120 
km)

30 yr, 1xCO2, 2xCO2, -12.5 (-10) 

Zhao et al. 
(2009) 

GFDL HIRAM timeslice 
[1]

50 km

Downscale A1B:  

CMIP3 n=18 ens.
-21.89 
(-15.09)

GFDL CM2.1 -3.77 (-15.09)

HadCM3 -9.06 (-8.3)

ECHAM5
-39.25 
(-15.09)
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Sugi et al. 
(2009) 

JMA/MRI global AGCM 
timeslice [1]

 Downscale A1B:  

20 km

MRI CGCM2.3
-27.17 
(-21.89)

MRI CGCM2.3
-21.89 
(-18.87)

MIROC-H
21.13 
(-20.38)

CMIP3 n=18 ens.
-19.62 
(-15.09)

60 km

MRI CGCM2.3
-27.17 
(-15.09)

MIROC-H 48.3 (-4.53)

CMIP3 n=18 ens.
-10.57 
(-15.85)

CSIRO 9.81 (-16.6)

Yokoi and 
Takayabu 
(2009)

CMIP3 ensemble [2] various A1B (2081-2100) -0.75

Yamada et al. 
(2010)

NICAM timeslice [1] 14 km
Timeslice using CMIP3 A1B  
SST change, 1990-2090

0

Li et al. (2010) ECHAM5 Timeslice [1] 40 km A1B change (2080-2009) -23.4

Murakami  and 
Sugi. (2010)

JMA/MRI global AGCM 
timeslice [1]

V3.1

Downscale A1B: 
CMIP3 n=18 ens

 

20 km
-20.38 
(-12.08)

60 km -9.06 (-14.34)

120 km
-19.62 
(-21.89)

180 km -14.34 (-0.91)

Murakami et al. 
(2011)

JMA/MRI global AGCM 
timeslice [1]

V3.1 20 km
Downscale A1B: 
CMIP3 n=18 ens.

-17.36

Study 
reference Model/Type Resolution Experiment WNP 

(Global) [%]
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Murakami et al. 
(2012a)

JMA/MRI global AGCM 
timeslice [1]

V3.2 60 km

Downscale A1B:  

YS, CMIP3 ens.
-24.91 
(-20.38)

YS, Cluster 1
-24.15 
(-18.87)

YS, Cluster 2 -31.7 (-21.13)

YS, Cluster 3 -1.51 (-10.57)

KF, CMIP3 ens.
-21.13 
(-15.09)

KF, Cluster 1
-24.91 
(-15.09)

KF, Cluster 2
-33.21 
(-15.85)

KF, Cluster 3 -6.04 (-10.57)

AS, CMIP3 ens.
-14.34 
(-15.09)

AS, Cluster 1 -14.34 (-16.6)

AS, Cluster 2 -24.15 (-9.81)

AS, Cluster 3 6.04 (-10.57)

Yokoi et al. 
(2012)

CMIP5 ensemble [2] Various 

RCP4.5 (2061-2100):  

CNRM-CM5 -5.56

CSIRO-Mk3.6.0 21.11

HadGEM2-CC 11.11

INM-CM4 16.67

MIROC5 -25.56

MPI-ESM-LR 7.78

MRI-CGCM3 4.44

Study 
reference Model/Type Resolution Experiment WNP 

(Global) [%]
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Murakami et al. 
(2012b)

JMA/MRI global AGCM 
timeslice [1]

V3.1 20 km

Downscale CMIP3 multi-model 
ens. 
A1B change (2075-2099 minus 
control)

-20.38 
(-17.36)

V3.2 20 km
-17.36 
(-11.32)

V3.1 60 km
-15.09 
(-17.36)

V3.2 60 km
-21.13 
(-18.11)

Emanuel 
(2013)

Statistical-dynamical 
downscaling [3]

---

RCP8.5 CMIP5  

CCSM4 7.57 (5.95)

GFDL CM3 23.78 (22.16)

HADGEM2 18.92 (11.89)

MPI-ESM-MR 13.51 (15.68)

MIROC5 17.84 (20.54)

MRI-CGCM3 12.43 (7.03)

Periods: 1981-2000, 2081-
2100

 

Tory et al. 
(2013b)

Alternative detection 
method for climate 
model TCs [1]

---

CMIP5/RCP8.5 
Periods:  (1970-2000 vs. 2070-
2100)

 

CNRM-CM5 -8.11 (-4.81)

CCSR4 0 (-4.54)

CSIRO-Mk3.6.0 -0.38 (-5.95)

GFDL-CM3
-16.22 
(-15.14)

GFDL-ESM2M 2 (-3.68)

GFDL-ESM2G -9.19 (-5.03)

BCC-CSM1.1 -2.49 (-6.49)

MIROC5
-16.76 
(-12.43)

Study 
reference Model/Type Resolution Experiment WNP 

(Global) [%]
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Murakami et al. 
(2014)

Model: MRI  

Timeslice using CMIP3 A1B 
multi model ens. mean SST 
change (2075-2099 minus 
1979-2003)

 

AGCM3.1(AS) 20x20km
-20.38 
(-12.08)

AGCM3.1(AS) 60x60km -9.06 (-14.34)

AGCM3.1(AS) 120x120km
-19.62 
(-21.89)

AGCM3.1(AS) 200x200km -14.34 (-0.75)

AGCM3.2(YS) 20x20km
-14.34 
(-12.83)

AGCM3.2(YS) 60x60km
-22.64 
(-18.87)

AGCM3.2(YS) 200x200km
-17.36 
(-17.36)

AGCM3.2(KF) 60x60km
-18.11 
(-13.58)

AGCM3.2(AS) 60x60km -9.81 (-12.83)

AGCM3.3(YS) 60x60km 6.04 (0)

Type: global (AGCM) [1]   

Model:  CMIP5 RCP4.5  

CCSM4 130x100km 10 (-7.78)

CMCC-CM 80x80km -1.11 (-5.56)

CNRM-CM5 150x150km
-12.22 
(-11.11)

CSIRO Mk3.6.0 200x200km 4.44 (-17.78)

HadGEM2-CC 200x130km -2.22 (-17.78)

HadGEM2-ES 200x130km
-16.67 
(-17.78)

MIROC5 150x150km
-36.67 
(-25.56)

Study 
reference Model/Type Resolution Experiment WNP 

(Global) [%]
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Murakami et 
al. (2014)

MPI-ESM-LR 200x200km -5.56 (-7.78)

MPI-ESM-MR 200x200km -2.22 (-3.33)

MRI-CGCM3 120x120km 7.78 (-2.22)

BCC_CSN1.1 120x120km 2.22 (-1.11)

Type: global (CGCM) [2]   

    

Model:  CMIP5 RCP8.5  

CCSM4 130x100km 6.49 (4.32)

CMCC-CM 80x80km 16.22 (18.38)

CNRM-CM5 150x150km
-14.05 
(-10.81)

CSIRO Mk3.6.0 200x200km -2.7 (-11.89)

HadGEM2-CC 200x130km
-10.27 
(-19.46)

HadGEM2-ES 200x130km
-14.05 
(-21.62)

MIROC5 150x150km -25.41 (-17.3)

MPI-ESM-LR 200x200km -6.49 (-8.11)

MPI-ESM-MR 200x200km -8.65 (-7.03)

MRI-CGCM3 120x120km 1.08 (-1.08)

BCC_CSN1.1 120x120km 5.95 (3.24)

Type: global (CGCM) [2]  
Periods: 1979-2003, 2075-
2099

 

Manganello et 
al. (2014) Model: IFS 

Type: global (AGCM) [1]

T1279(16km)
Timeslice using CMIP3 A1B 
CCSM3.0 ens.  
mean SST change (2065-2075 
minus 1965-1975) 
Periods:1960-2007, 2070-2117

-3.02

T159(125km) 1.51

Study 
reference Model/Type Resolution Experiment WNP 

(Global) [%]
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Kim et al. 
(2014)

Model: GFDL CM2.5 
Type: global coupled 
climate model [2]

50 km (atm.); 
25 km 
(ocean)

2xCO2 vs. control (fully 
coupled) 
50-year periods

-10 (-11.88)

Wu et al. 
(2014)

Model: Zetac  
Type: regional [1]

18km

Downscale CMIP3 A1B multi 
model ens. 
Periods: 1980-2006, 2080-
2099

-5.13

Knutson et al. 
(2015)

Model: GFDL HiRAM 
(global AGCM) [1]

50 km

Timeslice using CMIP5 
RCP4.5
Late 21st century vs. 1982-
2005 climatological SST

-38.89 
(-17.78)

Roberts et al. 
(2015)

Model: HadGEM3 
Type: global (AGCM) [1]

N96: 130 km Timeslice using CMIP5 
RCP8.5  
HadGEM2-ES SST change 
(2090-2110 minus 1990-2010) 
Periods: 1985-2011, 2100s

-10.81 
(-15.68)

N216: 60 km
-10.27 
(-12.97)

N512: 25 km -5.35 (-11.35)

Sugi et al. 
(2016)

JMA/MRI global AGCM3  
CMIP3 Timeslice 25 
years [1]

 
Control  (1979-2003) vs. A1B 
(2075-2099) 

 

60km, 
AGCM3.1
 
 
 

AS-convection 
CMIP3 ens SST

-15.09 
(-18.11)

AS-convection 
CSIRO SST

5.28 (-19.62)

AS-convection 
MIROC hi SST

43.02 
(-10.57)

AS-convection 
MRI SST

-23.4 (-15.85)

60km, 
AGCM3.2

YS- convection  

CMIP3 ens. SST
-20.38 
(-18.11)

YS-convection  

  CMIP3, cluster 1
-18.87 
(-17.36)

  CMIP3, cluster 2
-25.66 
(-18.87)

  CMIP3, cluster 3 0.75 (-9.06)

KF-convection  

  CMIP3 ens. SST
-18.87 
(-15.09)

Study 
reference Model/Type Resolution Experiment WNP 

(Global) [%]
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Sugi et al. 
(2016)

JMA/MRI global 
AGCM3  
CMIP3 Timeslice 25 
years [1]

60km, 
AGCM3.2

  CMIP3, cluster 1
-22.64 
(-15.09)

  CMIP3, cluster 2
-27.17 
(-15.85)

  CMIP3, cluster 3 -3.02 (-9.81)

AS-convection  

  CMIP3 ens. SST -7.55 (-12.83)

  CMIP3, cluster 1 -9.06 (-15.09)

  CMIP3, cluster 2 -15.85 (-8.3)

  CMIP3, cluster 3 8.3 (-9.06)

20 km, 
AGCM3.1

AS-convection 
CMIP3 ens SST

-18.11 (-16.6)

20 km, 
AGCM3.2

YS-convection 
CMIP3 ens SST

-15.85 
(-11.32)

Kossin et al. 
(2016)

Model: Emanuel 
type: statistical-
dynamical downscaling 
[3]

 
CMIP5 RCP8.5 (2006-2035 
versus 2070-2099)

11.89

Ogata et al. 
(2016)

Atm. Model: MRI-
AGCM3.2H 
Ocean:Model: MRI.
COM3 [2]

60 km grid 
Atm. Model

CMIP5 RCP8.5 
(2075-2099 vs. 1979-2003) 
Coupled: [2]

-22.97 
(-17.84)

Tsou et al. 
(2016)

Atm. Model:  HiRAM 
Type: global AGCM [1]

20 km
CMIP5 RCP8.5 
(2075-2099 vs. 1979-2003)

-29.19

Park et al. 
(2017)

Statistical downscale of 
CMIP5 models [1]

--

22 CMIP5 models 
Mean (and quartiles) 
RCP8.5 
(late 21st century)

15.14

Yamada et al. 
(2017)

NICAM 
Type: global (AGCM) [1]

14km
Timeslice using CMIP3 A1B 
multi model ens. mean SST 
change (2075-2099 minus 

-8.3 (-17.36)

Yoshida et al. 
(2017)

JMA/MRI global AGCM 
Timeslice  60years 
Ensemble 90members 
Statistical downscale for 
TC intensity [1]

V3.2 60 km

RCP8.5 late 21st century  

CCSM4 -20 (-17.84)

GFDL-CM3 -20 (-16.76)

HadGEM2-AO -16.76 (-17.3)

Study 
reference Model/Type Resolution Experiment WNP 

(Global) [%]
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Table 5.2. Summary of TC intensity change projections in the WNP (percent change in maximum wind 
speed or central pressure fall, except as noted in the table). All changes have been rescaled to be 
consistent with a global mean temperature change of +2oC. Type of ocean coupling for the study is 
indicated by the following Model/Type:  [1] no ocean coupling (e.g., specified sea surface temperatures 
or statistical downscaling of tropical cyclones; [2] fully coupled ocean experiment; or [3] hybrid type, with 
uncoupled atmospheric model for storm genesis, but with ocean coupling for the dynamical or statistical/
dynamical downscaling step.  

Yoshida et al. 
(2017)

JMA/MRI global AGCM 
Timeslice  60years 
Ensemble 90members 
Statistical downscale for 
TC intensity [1]

V3.2 60 km

MIROC5 -40 (-22.16)

MPI-ESM-MR
-23.24 
(-16.76)

MRI-CGCM3 -16.22 (-17.3)

Zhang and 
Wang (2017)

Model: Modified WRF 
Type: regional climate 
model (RCM) [1]

20km

RCP4.5 (2080-2099 minus 
1989-2010)

0

RCP8.5 (2080-2099 minus 
1979-2010)

-8.65

Lok and Chan 
(2017)

Downscale of 
HadGEM2-ES into 
RegCM3 [1]

RegCM3: 50 
km 

RCP 8.5 (2090s vs. 2000) -12.43

Wehner et al. 
(2018)

Model: CAM5.3 
Type: global (AGCM) [1]

28km
+2K global warming; RCP2.6 
Forcing changes 
60 simulated yrs

-6 (-10)

Bhatia et al. 
(2018)

Model: HiFLOR 
Type: global (CGCM) [2]

25km
RCP4.5 (2081-2100) vs.(1986-
2005) 

6.67 (10)

Study 
reference Model/Type Resolution Experiment WNP 

(Global) [%]

Study 
reference Model/Type

Resolution/
Metric type
(high to low 
resolution)

Climate Change scenario WNP 
(Global) [%]

Emanuel et al. 
(2008) Stat./Dyn. Model [3] Max Wind speed 

(%)

CMIP3 7-model, A1B 
(2181-2200 minus 1981-
2000)

2.44 (1.01)

Tsuboki et al. 
(2015)

CReSS regional model 
downscale of 30 
strongest typhoons in 
MRI-AGCM3.1 present 
and warm climates [3]

2 km; Average 
max wind speed 
(%)

CMIP3 18-model ens. A1B 
(2074-2087 minus 1979-
1993)

11.4
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Patricola and 
Wehner (2018)

WRF regional model v. 
3.8.1 nested in CAM5.1 
atm. Model forced with 
CMIP5 ens. boundary 
conditions [1]

4.5 km grid

RCPx 1980-2000 vs. 
2081-2100.  10-member 
ensembles of 1 to 9 cases 
per basin

RCP4.5 6.44

RCP6.0 4.18

RCP8.5 6.49

Kanada et al. 
(2017)

Four Non-hydrostatic 
regional models [1]

5 km grids
% change in 
Sq Root of 
central pressure 
fall. Assume 
envir pressv = 
1013.26 mb

CMIP5 ens. RCP8.5 (1979-
2003 vs. 2075-2099) 

CReSS 5.95

JMANJM 5.41

MM5 8.65

WRF v. 3.3.1 5.95

WRF with Bogus 2.11

Knutson et al. 
(2015)

Model: GFDL HiRAM 
(global AGCM) 
downscaled into GFDL 
Hurricane model with 
ocean coupling [3]

6 km; Max 
Wind speed 
change (%) of 
hurricanes

Timeslice using CMIP5 
RCP4.5  
Late 21st century vs. 
1982-2005 climatological 
SST

6.11 (4.56)

Knutson and 
Tuleya (2004)

GFDL Hurricane Model 
[1]

9 km grid inner 
nest; Max Wind 
speed (%)

CMIP2+ 
+1%/yr CO2
80-yr trend

5.25

Yamada et al. 
(2017)

NICAM
Type: global (AGCM) [1]

14km
Lifetime Max: 
sqrt of  pressure 
fall.
+/- indicate 
i n c r e a s e / 
decrease in 
intensity.

Timeslice using CMIP3 
A1B multi model ens. mean 
SST change (2075-2099 
minus 1979-2003)
Periods: 1979-2008, 2075-
2104

2.42 (2.11)

Note: based 
on % change 
in sqrt of 
pressure fall

Manganello et 
al. (2014)

IFS 
Type: global (AGCM) [1]

T1279
(~16km)
Max wind

Timeslice using CMIP3 A1B 
CCSM3.0 ens. mean SST
change (2065-2075 
minus 1965-1975) 
Periods:1960-2007, 2070-
2117

9.06

Wu et al. (2014) Model:  Zetac
Type: regional [1] 18km

Downscale CMIP3 
A1B multi model ens. 
Periods: 1980-2006, 2080-
2099

2

Study 
reference Model/Type

Resolution/
Metric type
(high to low 
resolution)

Climate Change scenario WNP 
(Global) [%]
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Tsou et al. 
(2016)

Atm. Model:  HiRAM
Type: global AGCM [1] 20 km CMIP5 RCP8.5 

(2075-2099 vs. 1979-2003) 7.57

Murakami et 
al. (2012b)

JMA/MRI global AGCM 
timeslice [1]

V3.1 20 km

Downscale CMIP3 multi-
model ens. A1B change 
(2075-2099 minus control)

12.08 (9.81)

V3.2 20 km 4.53 (2.26)

Avg. lifetime 
max winds

Oouchi et al. 
(2006)

MRI/JMA
Timeslice [1]

TL959 L60 
(~20km)   Avg. 
lifetime max 
windspeed

10y A1B
1982-1993
2080-2099

3.17 (8.3)

Kim et al. 
(2014)

Model: GFDL CM2.5
Type: global coupled 
climate model [2]

50 km (atm.);
25 km (ocean)

2xCO2 vs. control (fully 
coupled)
50-year periods

1.56 (1.69)

Yoshida et al. 
(2017)

J JMA/MRI global 
AGCM
Timeslice  60years
Ensemble 90members
Statistical downscale 
for TC intensity [1]

V3.2 
60 km
Max Wind

RCP8.5 late 21st century

CCSM4 4.32 (3.78)

GFDL-CM3 5.41 (4.86)

HadGEM2-AO 4.32 (4.32)

MIROC5 -0.54 (4.86)

MPI-ESM-MR 4.86 (4.86)

MRI-CGCM3 7.03 (6.49)

Hasegawa and 
Emori, (2005)

C C S R / N I E S /
FRCAGCM timeslice 
[1]

T106 L56
(~120km)
Max winds

5x20y at 1xCO2
7x20y at 2xCO2 De-crease

Study 
reference Model/Type

Resolution/
Metric type
(high to low 
resolution)

Climate Change scenario WNP 
(Global) [%]

Table 5.3 Summary of frequency of very intense TCs (i.e., Cat. 4-5) projections in the WNP.  The rows 
of reported results are ordered from top to bottom generally in order of decreasing model horizontal 
resolution.   All changes have been rescaled to be consistent with a global mean temperature change 
of +2oC. Type of ocean coupling for the study is indicated by the following Model/Type:  [1] no ocean 
coupling (e.g., specified sea surface temperatures or statistical downscaling of tropical cyclones; [2] fully 
coupled ocean experiment; or [3] hybrid type, with uncoupled atmospheric model for storm genesis, but 
with ocean coupling for the dynamical or statistical/dynamical downscaling step.
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Reference Model/Type Resolution:
high to low Experiment WNP (Global) 

[%]

E m a n u e l 
(2013)

Statistical-dynamical 
downscaling [3] ---

Downscale RCP8.5 CMIP5:  

CCSM4 10.81 (7.03)

GFDL CM3 32.43 (42.16)

HADGEM2 32.43 (17.84)

MPI-ESM-MR 17.84 (27.57)

MIROC5 36.76 (52.97)

MRI-CGCM3 21.08 (16.76)

Periods: 1981-2000, 2081-2100  

Knutson et al. 
(2015)

Model:  GFDL HiRAM 
(global AGCM) 
downscaled into GFDL 
Hurricane model w/ 
ocean coupling [3]

6 km
Timeslice using CMIP5 RCP4.5  
Late 21st century vs. 1982-2005 
climatological SST

-7.78 (31.11)

Murakami et 
al. (2012b)

JMA/MRI global AGCM 
timeslice [1] V3.2 20 km

Downscale CMIP3 multi-model 
ens. A1B change (2075-2099 
minus control)

-3.02 (3.02)

Tsou et al. 
(2016)

Atm. Model:  HiRAM 
Type: global AGCM [1] 20 km CMIP5 RCP8.5 

(2075-2099 vs. 1979-2003) 216.22

Bhatia et al. 
(2018)

Model: HiFLOR 
Type: global (CGCM) 
[2]

25km RCP4.5 (2081-2100) vs.(1986-
2005) 1.11 (31.11)

Sugi et al. 
(2016)

JMA/MRI global AGCM3  
CMIP3 Timeslice 25 
years  [1]

 
60km, 
AGCM3.1

Control  (1979-2003) vs. A1B 
(2075-2099)  

60km, 
AGCM3.2

AS-convection 
CMIP3 ens SST 0 (-1.51)

AS-convection 
CSIRO SST 6.04 (-18.87)

AS-convection 
MIROC hi SST 86.79 (33.21)

AS-convection 
MRI SST -12.83 (-3.02)

YS- convection 
CMIP3 ens. SST -22.64 (-19.62)

YS-convection  

  CMIP3, cluster 1 -21.89 (-12.08)

  CMIP3, cluster 2 -23.4 (-3.77)

  CMIP3, cluster 3 22.64 (7.55)

KF-convection  
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Sugi et al. 
(2016)

JMA/MRI global AGCM3  
CMIP3 Timeslice 25 
years  [1]

60km, 
AGCM3.2

  CMIP3 ens. SST -14.34 (-4.53)

  CMIP3, cluster 1 -29.43 (-17.36)

  CMIP3, cluster 2 -27.17 (-3.77)

  CMIP3, cluster 3 9.81 (7.55)

AS-convection  

  CMIP3 ens. SST 0.75 (-3.02)

  CMIP3, cluster 1 -3.02 (-12.08)

Sugi et al. 
(2016)

JMA/MRI global AGCM3  
CMIP3 Timeslice 25 
years  [1]

60km, 
AGCM3.2

  CMIP3, cluster 2 -7.55 (0.75)
  CMIP3, cluster 3 19.62 (3.02)

20 km, 
AGCM3.1

AS-convection 
CMIP3 ens SST -10.57 (9.81)

20 km, 
AGCM3.2

YS-convection 
CMIP3 ens SST -9.81 (-3.77)

Bacmeister et 
al. (2016)

Model: CAM5  
Type: global [1] 28km

Bias-corrected CAM5 coupled 
model SSTs: RCP8.5 (2070-2090 
vs 1985-2005)

1 5 2 . 4 3 
(108.11)

Wehner et al. 
(2018)

Model: CAM5.3 
Type: global (AGCM) 
[1]

28km
+2K global warming; RCP2.6 
Forcing changes 
60 simulated yrs

17 (27)

Yoshida et al. 
(2017)

JMA/MRI global AGCM 
Timeslice  60years 
Ensemble 90members 
Statistical downscale 
for TC intensity [1]

V3.2 
60 km

RCP8.5 late 21st century:  

CCSM4 -11.89 (-9.73)

GFDL-CM3 -10.81 (-5.41)

HadGEM2-AO -7.03 (-6.49)

MIROC5 -41.08 (-12.43)

MPI-ESM-MR -16.22 (-7.03)

MRI-CGCM3 1.08 (-1.08)

Wang and 
Wu. (2012)

CMIP5 downscaling; 
statistical/dynamical 
model [1]

--- A1B (2065-2099 minus 1965-
1999) 49.81

Reference Model/Type Resolution:
high to low Experiment WNP (Global) 

[%]

Table 5.4 Summary of projected changes in the proportion of very intense TCs (Cat.4-5) in the WNP.  The 
rows of reported results are ordered from top to bottom generally in order of decreasing model horizontal 
resolution.   All changes have been rescaled to be consistent with a global mean temperature change 
of +2oC. Type of ocean coupling for the study is indicated by the following Model/Type:  [1] no ocean 
coupling (e.g., specified sea surface temperatures or statistical downscaling of tropical cyclones; [2] fully 
coupled ocean experiment; or [3] hybrid type, with uncoupled atmospheric model for storm genesis, but 
with ocean coupling for the dynamical or statistical/dynamical downscaling step.
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Reference Model/Type Resolution:
high to low Experiment WNP 

(Global) [%]

Emanuel (2013) Statistical-dynamical 
downscaling [3] ---

Downscale RCP8.5 CMIP5:

CCSM4 3.02 (1.02)

GFDL CM3 6.99 (16.37)

HADGEM2 11.36 (5.31)

MPI-ESM-MR 3.81 (10.28)

MIROC5 16.06 (26.91)

MRI-CGCM3 7.69 (9.09)

Periods: 1981-2000, 2081-2100

Knutson et al. 
(2015)

Model:  GFDL HiRAM 
(global AGCM) 
downscaled into 
GFDL Hurricane 
model w/ ocean 
coupling [3]

6 km
Timeslice using CMIP5 RCP4.5  
Late 21st century vs. 1982-2005 
climatological SST

50.91 (59.46)

Yamada et al. 
(2017)

Model:  NICAM
Type: global (AGCM) 
[1]

14km

Timeslice using CMIP3 A1B multi 
model ens. mean SST change 
(2075-2099 minus 1979-2003)
Periods: 1979-2008, 2075-2104

23.87 (27.40)

Murakami et al. 
(2012b)

JMA/MRI global 
AGCM timeslice [1] V3.2 20 km

Downscale CMIP3 multi-model 
ens. A1B change (2075-2099 
minus control)

17.35 (16.17)

Tsou et al. (2016)
Atm. Model:  HiRAM
Type: global AGCM 
[1]

20 km CMIP5 RCP8.5
(2075-2099 vs. 1979-2003) 346.56 

Bhatia et al. 
(2018)

Model: HiFLOR
Type: global (CGCM) 
[2]

25km RCP4.5 (2081-2100) vs.(1986-
2005) -2.62 (9.79)

Wehner et al. 
(2018)

Model: CAM5.3
Type: global (AGCM) 
[1]

28km
+2K global warming; RCP2.6 
Forcing changes
60 simulated yrs

24.47 (41.11)

Sugi et al. (2016)

JMA/MRI global 
AGCM3  
CMIP3 Timeslice　25 
years  [1]

 Control  (1979-2003) vs. A1B 
(2075-2099)  

20 km, 
AGCM3.1 AS-convection CMIP3 ens SST 9.22 (31.67)

20 km, 
AGCM3.2 YS-convection CMIP3 ens SST 7.17 (8.51)

60km, 
AGCM3.1

AS-convection CMIP3 ens SST 17.78 (20.28)
AS-convection CSIRO SST 0.72 (0.94)
AS-convection MIROC hi SST 30.61 (48.95)
AS-convection MRI SST 13.79 (15.25)
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Reference Model/Type Resolution:
high to low Experiment WNP 

(Global) [%]

Sugi et al. (2016)
JMA/MRI global 
AGCM3  
CMIP3 Timeslice　25 
years  [1]

60km, 
AGCM3.2

YS- convection CMIP3 ens. SST -2.84 (-1.84)

YS-convection  

  CMIP3, cluster 1 -3.72 (6.39)

  CMIP3, cluster 2 3.05 (18.60)

  CMIP3, cluster 3 21.72 (18.26)

KF-convection  

  CMIP3 ens. SST 5.58 (12.44)

  CMIP3, cluster 1 -8.78 (-2.67)

  CMIP3, cluster 2 0.00 (14.35)

  CMIP3, cluster 3 13.23 (19.25)

AS-convection  

  CMIP3 ens. SST 8.98 (11.26)

  CMIP3, cluster 1 6.64 (3.56)

  CMIP3, cluster 2 9.87 (9.88)

  CMIP3, cluster 3 10.45 (13.28)

Yoshida et al. 
(2017)

JMA/MRI global 
AGCM
Timeslice  60years
Ensemble 
90members

Statistical downscale 
for TC intensity [1]

V3.2 
60 km

RCP8.5 late 21st century:

CCSM4 (n=15) 10.14 (9.87)

GFDL-CM3 (n=15) 11.49 (13.64)

HadGEM2-AO (n=15) 11.69 (13.07)

MIROC5 (n=15  min/max) -1.80 (12.50)

MPI-ESM-MR (n=15  min/max) 9.15 (11.69)

MRI-CGCM3 (n=15  min/max) 20.65 (19.61)

Ogata et al. 
(2016)

Atm. Model: MRI-
AGCM3.2H
Ocean Model: MRI.
COM3
[1] vs. [2]

60 km grid 
Atm. Model
~55 to 110 
km grid 
Ocean 
model

CMIP5 RCP8.5
(2075-2099 vs. 1979-2003)

Coupled mod.[2] 36.39 (34.87)

Atm. Only [1] 17.73 (5.96)
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Table 5.5  TC-related precipitation projected changes (%) for the late 21st century (relative to present 
day) in the WNP.  R refers to the averaging radius around the storm center used for the precipitation 
calculation.  All changes have been rescaled to be consistent with a global mean temperature change 
of +2oC. Type of ocean coupling for the study is indicated by the following Model/Type:  [1] no ocean 
coupling (e.g., specified sea surface temperatures or statistical downscaling of tropical cyclones; [2] fully 
coupled ocean experiment; or [3] hybrid type, with uncoupled atmospheric model for storm genesis, but 
with ocean coupling for the dynamical or statistical/dynamical downscaling step.

Reference Model/Type
Resolution/ 
averaging 
radius (R)

Experiment WNP (Global) 
[%]

Hasagawa and 
Emori (2005)

CCSR/NIES/
FRCAGCM timeslice 
[1]

T106 L56 
(~120km)/ 
R=1000 km

5x20y at 1xCO2 
7x20y at 2xCO2 5.25

Villarini et al. 
(2014)

Models:    
GFDL HiRAM 50 km 20 yrs 17 (12)

CMCC 75 km 10 yrs 15 (13)

CAM5 25 km 9 yrs 3.7 (17)

AGCMs with specified 
SSTs and CO2 levels 
[1]

Avg, rain 
rate within 5 
deg radius, 
10% rainiest 
storms

2xCO2 and +2K SST increase 
combined

 
 

Tsuboki et al. 
(2015)

CReSS regional 
model downscale of 
30 strongest typhoons 
in MRI-AGCM3.1 
present and warm 
climates [3]

2 
km;Average 
rain rate 
with 100 km 
radius

CMIP3 18-model ens. A1B 
(2074-2087 minus 1979-1993) 18.87

Knutson et al. 
(2015)           

Model:  GFDL HiRAM 
(global AGCM) 
downscaled into 
GFDL Hurricane 
model with ocean 
coupling [3]

6 km; Radius 
around storm 
center (R) = 
100 km

Timeslice using CMIP5 RCP4.5  
Late 21st century vs. 1982-2005 
climatological SST

17.78 (14.44)

Tsou et al. (2016)
Atm. Model:  HiRAM 
Type: global AGCM 
[1]

20 km; Max 
precip within 
200km of 
center at 
max TC 
intensity

CMIP5 RCP8.5 
(2075-2099 vs. 1979-2003) 29.19

Yoshida et al. 
(2017)

 JMA/MRI global 
AGCM 
Timeslice  60years 
Ensemble 90 
members [1]

V3.2  
60 km 
Radius 
around 
storm center: 
200km

RCP8.5 late 21st century  

CCSM4 15.68 (16.22)
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Table 5.6  Summary of projections of storm surge in the WNP for approximately the late 21st century. 

Yoshida et al. 
(2017)

 JMA/MRI global 
AGCM 
Timeslice  60years 
Ensemble 90 
members [1]

V3.2  
60 km 
Radius 
around 
storm center: 
200km

GFDL-CM3 20.54 (17.3)

HadGEM2-AO 16.22 (15.14)

MIROC5 10.27 (7.03)

MPI-ESM-MR 16.76 (14.59)

MRI-CGCM3 23.78 (21.62)

Patricola and 
Wehner (2018)

WRF regional model 
v. 3.8.1 nested in 
CAM5.1 atm. Model 
forced with CMIP5 
ens. boundary 
conditions [1]

4.5 km grid 
Precip rate 
change (%)

RCPx 1980-2000 vs. 2081-2100. 
10-member ensembles of 1 to 9 
cases per basin.

 

RCP4.5 13.33

RCP6.0 10.91

RCP8.5 16.76

Reference Model/Type
Resolution/ 
averaging 
radius (R)

Experiment WNP (Global) 
[%]

Study 
reference Model details Scenario Time-slice Notes

Hoshino et al. 
(2016)

-Two-level 
storm surge 
model 
(Yamashita 
and Tsuchiya 
(1984)
-AGCM 
T959L60(20km 
resolution)

-UK Met 
Office Hadley 
Center 
(present 
climate)
-CMIP3 
multi-model 
projections 
of SRES 
A1b(future 
climate)

-1979-2004(present 
climate)
-2015-2031(near future 
climate)
-2075-2100(future 
climate)

Sea level rise is expected 
to increase the risk of 
higher storm surges around 
Tokyo or Kawasaki.

Nakamura et 
al. (2016)

MIROC5
FVCOM

RCP 2.6
RCP 4.5
RCP 6.0
RCP 8.5

- 2011-2020 (near 
future)
- 2091-2100 (future)

(Philippines, RCP 8.5)
2.5m higher considering 
only increases in SST
Increase of 12% 
considering increases in 
SST and AAT
Increase of 12.9% 
considering increases in 
SST, AAT and RH
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Uncertainties

6.1 Introduction

After assessing the impacts of climate 
change on tropical cyclones in previous 
chapters, we will now discuss the sources 

of uncertainty to further objectively interpret the 
assessment results demonstrated in previous 
chapters. 

Studies assessing climate change impacts on 
TCs can be divided into two branches. One is to 
examine trends of historical TC data, including 
the TC best track and deduced metrics, traditional 
weather observations and remote sensing data 
associated with TCs, and miscellaneous observed 
data or geologic proxy data related to TCs and 
their societal or ecological impacts. The other is 
to project the future TC activity and associated 
impacts on human society in the context of a range 
of future climate scenarios using climate models. 

6.2  Historical trend assessment

Three issues, including data, methodology and 
physical understanding, may potentially impact 
the uncertainties of the first group of studies. The 
physical understanding potentially affects all parts 
of the climate change assessment and here we 
refer to those aspects of physical understanding 
associated with specific problems of data and 
methodology.

6.2.1 Data Completeness and Homogeneity

The data issue refers to the completeness 
and homogeneity of historical data (Landsea 
2007, Walsh et al. 2016, Ying et al. 2014). 
The completeness of data is an important 
issue because the TC activity is an important 
component of the global energy and moisture 

cycles (e.g., Jiang and Zipser 2010, Rodgers 
et al. 2000, 2001; Jullien et al. 2012, Ying et al. 
2012). The completeness of data, which is closely 
tied with temporal and spatial inhomogeneities, is 
highly dependent on developments of the global 
observation system and data analysis techniques. 
Temporal and spatial inhomogeneities can be 
present in various historical TC datasets (e.g., 
Landsea and Franklin 2013). They can make 
it very difficult to distinguish long-term trends 
due to climate change, or multidecadal internal 
variability, from spurious changes associated 
with changes in observing methods. To improve 
the data homogeneity, it may be imperative to 
reanalyze the historical TCs using consistent 
techniques and sufficient data, although there 
may exist various practical problems (Emanuel 
et al. 2018) with achieving the goal of data 
homogeneity. 

Despite some efforts at homogenization, the 
four best-track data in the Typhoon Committee 
region show disagreements in details, even also 
in the long-term trend, as indicated in previous 
chapters. For example, the Typhoon Committee 
sponsored a Best-track Consolidation Meeting 
and found it was difficult to verify the maximum 
surface wind speeds due to differences inherent 
in observations and wind-averaging periods. The 
Typhoon Committee then designed an annual 
operating plan (AOP) entitled “Harmonization of 
Tropical Cyclone Intensity Analysis” to compare 
the current intensity (CI) number which is a basic 
parameter to derive TC intensity. It was found 
that the major causes of large discrepancies may 
associated with specific details in the analysis 
process (Koide 2016), such as analysis during 
rapid intensification, interpretation of parameters 
based on cloud patterns, and CI-intensity 
rules. Similar causes were also mentioned in 
Barcikowska et al. (2012). Therefore, an objective 
and standardized analysis system may avoid 
some of these problems, and improvements in 
the general rules used in analysis procedures 
as well as physical understanding on special 
problems (e.g. rapid intensification, wind-pressure 
relationship, etc.) may also help to improve the 
data analysis techniques.

CHAPTER 6
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6.2.2  Methodologies for Homogenization 
and Trend Detection

The methodology issue concerns mainly the 
appropriateness of homogenization methods, 
trend detection techniques, and the methods used 
to attribute changes to natural and anthropogenic 
changes. 

Unlike other atmospheric metrics such as 
temperature, it is difficult to find appropriate 
statistical homogenization approaches for TC best 
track data due to the very complex conditions of 
the data (e.g. Koide 2016; Ying et al. 2011a; Ying 
et al. 2014). An alternative choice is to reconstruct 
a new and homogenized dataset specifically for 
trend analysis based on existing observations 
such as satellite data (Kossin et al. 2013). Another 
approach is to simulate the historical TC intensity 
using dynamical downscaling methods (Wu and 
Zhao 2012). Using the TC best tracks, SST and 
vertical wind shear as driving parameters, they 
derived TC intensities using a simple air-sea 
coupled model with an axisymmetric atmospheric 
component and one-dimensional oceanic 
component. They implicitly assumed that the 
data quality of these driving parameters was high 
enough to introducing minimum inhomogeneities 
into the results, and that the dynamical 
downscaling framework has the capability to 
accurately reproduce the intensity variability from 
the input data. The latter assumption is closely 
associated with our knowledge not only of natural 
and anthropogenic variability but also on the 
strengths and limitation of various dynamical model 
components. Further discussion on dynamics will 
be presented in next subsection. Their approach is 
based on identifying inhomogeneities in historical 
data by comparison with homogeneous samples 
of variables as derived from models, under the 
assumption of perfect models and homogeneous 
environmental inputs. 

Regarding trend detection, uncertainty may be 
introduced by approaches that do not robustly 
identify climate changes. In a statistical sense, 
climate change is defined as distinct change 
of the characteristics of probability distribution 

function (PDF), such as parameters of scale, 
shape and location (IPCC 2001; Meehl et al. 
2000). This suggests the importance of assumed 
distribution of samples. Since TCs are extreme 
events with non-normally distributed metrics such 
as wind (i.e., intensity) and precipitation, important 
changes may occur in  central values (median, 
mean) or tails of the PDF.  Methods that assume 
a normal distribution should be used with caution 
since the unbiased estimates of PDF parameters 
highly depend on the prior assumption of the 
distribution form. For example, it may not be 
appropriate to apply normal distribution-assuming 
methods on samples from only the tails of a PDF 
to examine the change of extreme events. A better 
choice may be non-parametric methods, which 
are independent of the distribution. For example, 
quantile regression (Koenker 2005; Koenker 
and Hallock 2001) can used to assess trends 
in various quantiles (i.e., all parts of PDF) and 
has been used to assess climate trends (Elsner 
et al. 2008; Haugen et al. 2018; Murnane and 
Elsner 2012; Ying et al. 2011b; Ying et al. 2011c). 
However, both parametric and non-parametric 
methods typically require the samples to be 
independent. For TCs, interannual and decadal 
variabilities were identified in some metrics (e.g., 
He et al. 2015; Klotzbach and Gray 2008; Zhang 
et al. 2018; Zhao et al. 2018). Such fluctuations 
suggest that the data are serially correlated, 
which will introduce uncertainties into tests of 
significance of long-term trends (e.g., Douglas 
et al. 2000; Hamed 2008; Kam and Sheffield 
2016). To address this issue, the influence of the 
sample’s autocorrelation needs to be considered 
(Douglas et al. 2000; Hamed 2008; Kam and 
Sheffield 2016). In this sense, investigations that 
consider quasi-periodic variations of in the climate 
system (e.g., the Interdecadal Pacific Oscillation 
or Pacific Decadal Oscillation) and their role in TC 
variability, either using statistical regression (e.g., 
Kossin et al. 2016) or control model simulations 
(Bhatia et al. 2019) can help distinguish TC 
internal variability from long-term forced TC 
climate trends, with associated confidence levels. 

For attribution of observed changes, historical 
climate model simulations with observed historical 
forcing agents can be used, although these 
techniques have been used relatively rarely in the 
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WNP basin (see Chapter 3).  The reliability of such 
methods depends on the reliability of the climate 
models and the historical forcings, including the 
ability of the models to simulate the TC metric in 
question and the historical changes in a variety 
of TC-relevant environmental parameters (e.g., 
SSTs, wind shear, atmospheric circulation, 
moisture, atmospheric and oceanic vertical 
temperature profiles).

6.3  Future trend projection

One way to anticipate future trends in TC activity 
due to climate change is to identify and detect 
emerging climate-induced trends in the historical 
TC observational data.  Alternatively, model 
simulations and projections provide a means to 
quantify potential future TC changes under certain 
assumptions about future climate forcing and 
climate change. Such simulations or projections 
are typically based on numerical models. 
Due to difficulties in directly solving complex 
systems of dynamical equations and limitation 
in understanding of various physical processes 
of the climate system, numerical models will 
include various hypotheses and parameterization 
schemes.  These simplifications, in turn, cause 
discrepancies between “model climate” and the 
real climate, especially those related to dynamical 
and moisture processes (e.g. Shepherd 2014). 

For TCs, the presently known uncertainty sources 
include model resolution, parameterization 
schemes for convection, future SST pattern 
uncertainty, and a variety of other related 
environmental climate parameters (e.g. global 
temperature sensitivity, lapse rate changes, 
changes in the vertical temperature gradient in the 
upper ocean, atmospheric circulation changes, 
etc.), as well as TC detection schemes applied 
to model data (Horn et al. 2014; Murakami et 
al. 2012a; Murakami et al. 2012b; Walsh et al. 
2016; Wehner et al. 2015). Due to differences 
among models and post-processing approaches, 
biases relative to TC observations may be found 
in metrics such as annual TC numbers, tracks, 
intensities, duration, size, precipitation rates, 
and other metrics (Camargo and Wing 2016; 

Gettelman et al. 2017; Walsh et al. 2016).  The 
fidelity of the relationship between simulated TCs 
and the simulated environments is another source 
of uncertainty (Camargo et al. 2007; Wehner 
et al. 2015). This implies that an evaluation of 
confidence in simulated or projected TC activity 
should consider not only a model’s performance 
in reproducing the large-scale air-sea system, but 
also to what extent the model climate simulates 
or includes the important physical processes 
that operate in the real climate. Both are highly 
dependent on our understanding of the physics of 
natural and anthropogenic climate change. 

Moreover, as Wehner et al. (2015) suggested, 
“projections of future tropical cyclogenesis 
obtained from metrics of model behavior that are 
based solely on changes in long-term climatological 
fields and tuned to historical records must also be 
interpreted with caution”. In other words, empirical 
TC genesis potential indices based on historical 
observations should be applied to the projection 
of numerical models with caution, since the 
simulated relationship between TCs and various 
environmental factors was reported to be different 
from one model to the next (Camargo et al. 2007). 
One approach may be to apply a unified technique 
to compare historical and future climate aspects 
produced by a given model (e.g. Emanuel 2013; 
Knutson et al. 2008; Villarini and Vecchi 2012; 
Zhang et al. 2017). However, one should carefully 
examine and evaluate the reasonableness of any 
assumptions of particular technique, because 
such assumptions may introduce uncertainties 
(e.g., Walsh et al. 2016; Tory et al. 2014). 

As compared with results for global TC activity, 
researchers found even larger divergence of 
results between model projections for some 
metrics for individual basins (Camargo 2013; Tory 
et al. 2013a; Tory et al. 2013b). Bacmeister et al. 
(2018) suggested that the large uncertainties of 
projected basin-scale TC activity, which were as 
large as the effects of using an RCP8.5 vs. RCP4.5 
emission scenario (van Vuuren et al. 2011), can 
be attributed to uncertainties in future SSTs. 
Nakamura et al. (2017) suggested that projected 
changes in future TC track patterns were model- 
and scenario-dependent, and they emphasize the 
importance of multi-model ensembles for more 
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robust future projections. 

6.4  TC risk assessment

TC risk is among the fascinating issues of adaption 
to climate change. Destructiveness of TCs is 
closely related to TC-structure and accompanying 
phenomena. In particular, destructive wind, 
storm surge and waves are closely associated 
with the near-surface TC wind field; flooding 
and landslides are mainly associated with 
torrential rain; and squall lines and tornadoes 
are associated with deep convection. Therefore, 
the translational and structural characteristics of 
TCs (i.e., tracks, intensities, and distribution of 
destructive wind and torrential rain) are essential 
for TC risk models. Evaluation focusing on 
these TC characteristics will help to improve risk 
models, and consequentially will be a benefit to 
disaster mitigation and the evaluation of economic 
impacts. In this section, we will focus mainly on 
the uncertainties in TC wind field, rainfall, and 
storm surge

6.4.1  Wind field

TC risk (loss) models usually use empirical TC 
wind models, although recently more  physical 
models are being used (e.g., Emanuel et al. 2006; 
Loridan et al. 2017; Tan and Fang 2018; Vickery 
et al. 2000; Vickery et al. 2009; Watson Jr. and 
Johnson 2004). In fact, TC wind field models 
are a statistical or dynamical downscaling for 
the TC wind field. As summarized by Vickery et 
al. (2009), the typical wind field model includes 
three components:   gradient wind modeling, 
topographical adjustment of the wind field, and 
gust factor model for final application. Therefore, 
the first source of uncertainties may come from 
the gradient wind model, which contains simplified 
physical representations, empirical parameters 
(Holland 1980), and some elements that are 
difficult to measure (e.g., the density of air). 
Second, the uncertainties may also be attributed 
to topographical adjustment schemes, using 
either an atmospheric boundary layer model or 

a gust factor, which is a roughness-associated 
wind speed reduction factor between surface 
wind (10m above water or ground) and gradient 
wind (at gradient height). The TC boundary layer 
model remains one of the largest challenges due 
to the unique features under TC conditions, and 
numerical models usually have limited resolution 
to resolve the boundary layer (Gopalakrishnan 
et al. 2016). For the TC gust factor, although 
many studies demonstrated that the gust factors 
associated with TC are not different from those 
extra-tropical storm conditions, the small-scale 
strong winds due to additional turbulence sources 
(e.g. rolls, wind swirls, etc.) may be much larger 
than expected (Vickery et al. 2009). 

Physical numerical models include more explicit 
physics processes than empirical models, and a 
number of high resolution dynamical models can 
simulate TC intensity (MSW or MCP) and changes 
response to climate changes. These changes can 
be used as input to the wind risk models used 
for damage assessment as discussed above. As 
suggested in chapter 5, many models currently 
project an increase in TC intensity in the future 
in response to the greenhouse warming climate; 
therefore, the risk of TC wind damage will likely 
increase as well.

6.4.2  Rainfall

Advances were reported in reducing precipitation 
uncertainties in CMIP5 models as compared 
to CMIP3 models (Woldemeskel et al. 2016). 
However, Woldemeskel et al. (2016) also found 
large uncertainties in heavy rain regions, as well 
as mountainous and coastal areas.   Despite this, 
as chapter 5 indicates, there is a strong consensus 
among available TC projection studies that TC-
induced rainfall rates will increase in a greenhouse 
warmed climate.  The potential uncertainty 
sources for TC rainfall include the contribution 
of uncertainties in SST patterns, locations of 
convection and convergence associated with SST 
pattern and land-sea thermal contrast (Endo et 
al. 2017; Kent et al. 2015). For example, Knutson 
et al. (2015) reported no significant change in 
projected TC precipitation rates in the southwest 
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Pacific basin, which they noted was the basin with 
the smallest projected SST increase of any TC 
basin. This suggests the potential importance of 
SST pattern changes for TC rainfall rate response.  
Recently, Kendon et al. (2017) suggested that the 
changes in rainfall intensity, as well as in daily 
and hourly rainfall extremes, show remarkable 
differences in summertime projections between 
coarse- and high-resolution models, in which 
cumulus convection was treated differently. 

6.4.3  Storm surge

As discussed in Chapter 5, climate models 
continue to predict future increases in global and 
WNP regional sea level rise and this will contribute 
toward increased coastal flooding and inundation 
risk during extreme events, assuming all other 
factors equal. 

Storm surge and ocean models are usually driven 
by atmospheric wind, pressure fields and so forth. 
One of the challenging issues is the accurate 
driving force under TC condition, which introduces 
the first aspect of uncertainties in storm surge 
evaluation (e.g. Yang et al. 2016; Yasuda et al. 
2014). When remote effects are considered, 
the storm surge is also highly dependent on TC 
tracks and intensities, and the distances relative 
to coasts (Wada et al. 2018). Storm surge risk 
may also be affected by long-term changes of TC 
activity and sea-level rise (Resio and Irish 2015). 
In addition to the atmospheric component of 
driving forces, the ocean or wave models play the 
essential roles in projecting storm surge. Ocean or 
wave models, as examples of numerical models, 
exhibit the same general kinds of uncertainties 
as atmospheric models but for different essential 
physical processes and boundary conditions. 

6.5  Summary

This chapter outlined some of the uncertainty 
sources introduced by data, methodology, 
numerical models, and empirical models. 
Understanding and considering these uncertainty 

sources is important for climate change 
assessment. First, this can improve the quality 
of each component covered by assessment. 
Second, this can help to evaluate existing studies 
more comprehensively and appropriately.  We 
emphasize that discussion of the uncertainties in 
climate change does not imply that climate change 
research are of little value for decision making.  
In that regard, Lewandowsky et al. (2014a,b) 
conclude that uncertainty in climate science 
leads to greater, rather than less, concern about 
unabated warming, and a stronger argument for 
mitigating climate change than would be the case 
if there were no uncertainty. 
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Recommendations for Future Progress

The following are our recommendations for 
future research and observation activities 
that we believe will lead to future progress 

in the field of TCs and climate change in the WNP 
basin.

7.1  TC Observed Data and Trend Analysis

Continue to further develop and improve 
homogenous climate-quality TC datasets. The 
Typhoon Committee should encourage and 
continue to coordinate efforts by Members and 
the research community for the above efforts.  
Examples include:

(i) Sharing of observations/data between 
meteorological services and warning centers 
as well as IBTrACS;

(ii) Analysis of new TC related metrics (LLMI and 
global TC translation speed are examples of 
metrics since last report);

(iii) Assessing impact of changes in observing 
capabilities over time (e.g., satellite vs. pre-
satellite; ship tracks; aircraft reconnaissance 
vs. no aircraft reconnaissance); 

(iv) Conducting further research on observed 
trends in TC-induced high winds, heavy rain 
and storm surge; and

(v) Enhancing collaboration and coordination of 
aircraft reconnaissance in the basin.

7.2  Detection and Attribution

Members and research community are 
encouraged to conduct further research to:
Expand the use of detection and attribution 
techniques in studies of past TC variations to 
improve understanding of the causes of past 
changes and confidence in future projections; 
Develop better estimates of expected levels 
of internal decadal to centennial scale natural 
variability of TC activity for use in climate change 
detection and attribution studies; and 

Develop better estimates of expected forced 
responses to historical climate forcing agents such 
as increases in greenhouse gases and changes in 
aerosol forcing

7.3  Model projections

Members and the research community are 
encouraged to conduct further research to:
Investigate TC extreme events under climate 
change scenarios in support of vulnerability 
assessments;
Continue to evaluate the sensitivity of TC 
projections to the details of climate and/or TC 
downscaling models;
Enhance the use of statistical significance testing, 
evaluation of present-day simulations (including 
interannual variations), and multi-model ensemble 
experiments to better quantify uncertainty in future 
projections; 
Evaluate present-day simulations and future 
projections for the full life cycle of the TCs and their 
related impacts, including winds, precipitation, 
and storm surge;
Reduce or quantify uncertainties to the extent 
possible in the 21st century projections of regional 
SST patterns and the vertical structure of the 
atmospheric (temperature, winds, moisture) and 
oceanic changes as these differences can lead to 
large differences in regional TC projections; and 
Continue research to better understand the basic 
physical mechanisms that cause the observed 
or modeled changes in TC activity (including TC 
track / genesis position changes) in the basin.

7.4  Impact assessments

The Typhoon Committee may consider 
coordinating efforts by Members to:

(i) Encourage more cross-cutting research on 
long-term trends of TC impacts in the region.

CHAPTER 7
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Table A1: Climatological mean of landfalling / affecting tropical cyclones

Note : Definitions of landfalling TCs and affecting TCs adopted by Members are summarized in Table A2

* TS or above
** Only TS Vami in 2001 in historical record
# Landfalling within 300 km of Hong Kong, China (the number of landfalling tropical cyclones and typhoons with the center 
passing over Hong Kong, China are 0.3 and 0.2 respectively).
^TCs with maximum winds of 17 ms-1 or above
“NA” means Information not available from the survey results.

APPENDIX I - SUMMARY OF SURVEY RESULTS

Tropical Cyclones Typhoons
Data Period

Landfalling Affecting Landfalling Affecting

China 9 (7*) 14 3 NA 1949 – 2017

Hong Kong, China 2.5# 6.2 1.4# 2.3 1961 – 2018

Japan 2.7 NA 1.4 NA 1981 – 2010

Macao, China 1.0 NA 0.6 NA 1990 – 2016

Republic of Korea NA NA 0.8^ 3.1^ 1977 – 2018

Singapore 0 0 0 0.01** NA

Thailand 3 NA 0.005 NA 1951 – 2018
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Member
Definitions

Landfalling Affecting

China

Landfalling TS is defined as TC with 
intensity of TS and above when it 
makes landfall in China.
TC affecting China is defined as a 
TC that generates severe wind and 
precipitation in China (Ying et al., 
2011)
http:/ / tcdata.typhoon.org.cn/en/
dlrdqx_zl.html

A TC that induces wind or precipitation in 
China, with the following having been observed 
at least one station: (1) either sustained wind 
at least 13.9 m s-1 (Beaufort Scale 7) or wind 
gusts of at least 17.2 m s-1 (Beaufort Scale 
8), or (2) storm precipitation greater than 50 
mm, or (3) the storm precipitation greater than 
30mm with either sustained wind at least 10.8 
m s-1 (Beaufort Scale 6) or a wind gust of at 
least 13.9 m s-1 (Beaufort Scale 7).

Hong Kong, China

The centre of a TC passing over any 
part of the territory of Hong Kong

Since the number of TCs passing 
over Hong Kong is small, the number 
of tropical cyclones making landfall 
within 300 km of Hong Kong (a TC 
that crosses the coast within 300 
km of Hong Kong, including those 
coming within 300 km of Hong Kong 
over land after crossing the coast at 
more than 300 km) is also adopted in 
some studies to reflect the impact of 
landfalling TCs on Hong Kong.

i) A TC affecting Hong Kong means it comes 
within 500 km of Hong Kong.   

ii) A typhoon affecting Hong Kong means a 
TC with typhoon intensity or above comes 
within 500 km of Hong Kong.

Japan

i) Landfalling TC: one whose center 
reached the coast of at least one of 
the four major islands in Japan
ii) Same as in i) but for typhoon

NA

Macao, China

i) Landfalling TCs are the tropical 
cyclones whose nearest distance from 
Macao are less than 100 km.
ii) The landfalling typhoons are the 
typhoons whose nearest distance 
from Macao are less than 100 km.

NA

Republic of Korea
Landfalling typhoon: the center of a 
typhoon lands over Republic of Korea.

Affecting typhoon causing a typhoon advisory 
to be issued across Republic of Korea.

Singapore Singapore has not been directly affected by TCs.

Thailand
Landfalling is defined as the center of 
circulation of the TC located over land 
of Thailand

NA

Table A2 : Definitions of landfalling and affecting tropical cyclones/typhoons
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Table A3-1: Changes in tropical cyclone landfalling/affecting frequency, intensity and locations

Member Frequency and intensity of landfalling/affecting 
tropical cyclones Landfalling locations

China

(i) an increasing trend in the peak intensity and frequency 
of intense typhoons, mainly because of the combined 
effect of changes in SST and vertical wind shear.　Wu 
and Zhao (2012)
(ii) no long-term trend is observed in either the frequency 
or intensities of  TCs making landfall at the Guangdong 
province (Zhang et al. 2011)

NA

Hong Kong, China

(i) a decrease in the TC frequency in the vicinity of Hong 
Kong but with statistically insignificance at 5% level
(ii) The large differences in the available datasets do not 
allow for a reliable detection of the long-term trend of the TC 
intensity in the SCS (Lee et al., 2012)

NA

Japan
No significant change in the TC frequency in Japan is 
identified. (Kumazawa et al. 2016)

NA

Republic of Korea

(i) The number of strong typhoon with maximum speeds of 
greater than 44 m/s has significantly increased for a 10-year 
period from 2001 to 2010;  the number of TCs existing near 
Republic of Korea is insignificantly reduced (Cha et al., 2014)
(ii) The numbers of typhoons affecting and landfalling in 
Republic of Korea have no long-term trend over 42 years 
from 1977 to 2018 (Cha and Shin, 2019)

NA
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Table A3-2: Changes in intensity of high winds and heavy precipitation, and casualties and 
economic loss

Member Intensity of high winds and heavy 
precipitation Casualties and economic loss

China

Only few stations in southern and eastern 
China showed significantly decreasing TCR. 
Meanwhile, significantly increasing TCR is 
observed in few stations in southwestern 
China.
(Zhang et al. 2018)
the average rainfall per TC has significantly 
increased in Southeast China during 1965- 
2009. (Zhang et al. 2013)

(i) The annual total direct economic loss 
increased significantly due to the rapid 
economic development over the past 25 
years although there was little change in the 
overall landfall frequency, landfall intensity 
and overland time. 
(ii) Under the background of global warming, 
the intensity of tropical cyclones that made 
landfall on Hainan decreased, but the 
overland time and frequency of tropical 
cyclones that made landfall on Fujian and 
Zhejiang increased, respectively, over the 
same period of time. 
(iii) The percentage of direct economic 
losses of GDP and deaths at the national and 
provincial levels caused by landfall tropical 
cyclones decreased due to the effectiveness 
of disaster prevention and reduction in China.
(Zhang et al. 2011)

Hong Kong, 
China

(i) TCs making landfall over east China have 
tended to be more destructive in recent 
decades, with a significant increase in the 
power dissipation index (PDI) after landfall 
(1975-2014); in contrast, changes in the PDI 
of TCs making landfall over south China are 
less apparent. 
(Li et al., 2017)
(ii) TC rainfall has a decreasing trend in 
frequency and intensity in recent decades and 
affecting the observed trends of the rainfall 
variability in Hong Kong.
(Li et al., 2015)
(iii) No significant trend on the TC-induced 
extreme rainfall in Hong Kong.
(iv) The extreme high winds associated with 
TCs within 500 km range of Hong Kong have 
no significant trend at Waglan Island (offshore 
island) while those of the urban station at Kai 
Tak have a significant decreasing trend.
(Lee et al., 2017)

NA
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Japan

i) A cause of the increasing trend in heavy 
rainfall in Okinawa was increased rainfall 
amounts per typhoon rather than a rising 
number of strong typhoons approaching 
the island. In particular, typhoons which 
approached the island within 100 km, during 
the peak typhoon month of September 
showed a statistically significant increase 
in total rainfall of 6.5 mm y−1 during 1982 - 
2005.(Ikema and et al. 2010)
ii) intensity of precipitation with 5-yr return 
period significantly increases by 0.28%/yr in 
the Pacific Ocean coast in Japan for 1951 
– 2010 but not so for 10-yr one or longer 
(0.28%/yr)

NA

Macao, 
China

NA
No casualty occurs during 2007 to 2016 Note: 
This is a table in a report (Meteorological and 
Geophysical Bureau, 2016).

Republic of 
Korea

No long-term trend in high wind is observed in 
Republic of Korea (Cha and Shin, 2019)

A decrease trend of typhoon- induced 
damage including casualties and economic 
loss since 2000 (Ministry of the Interior and 
Safety, 2017).

Member Intensity of high winds and heavy 
precipitation Casualties and economic loss
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