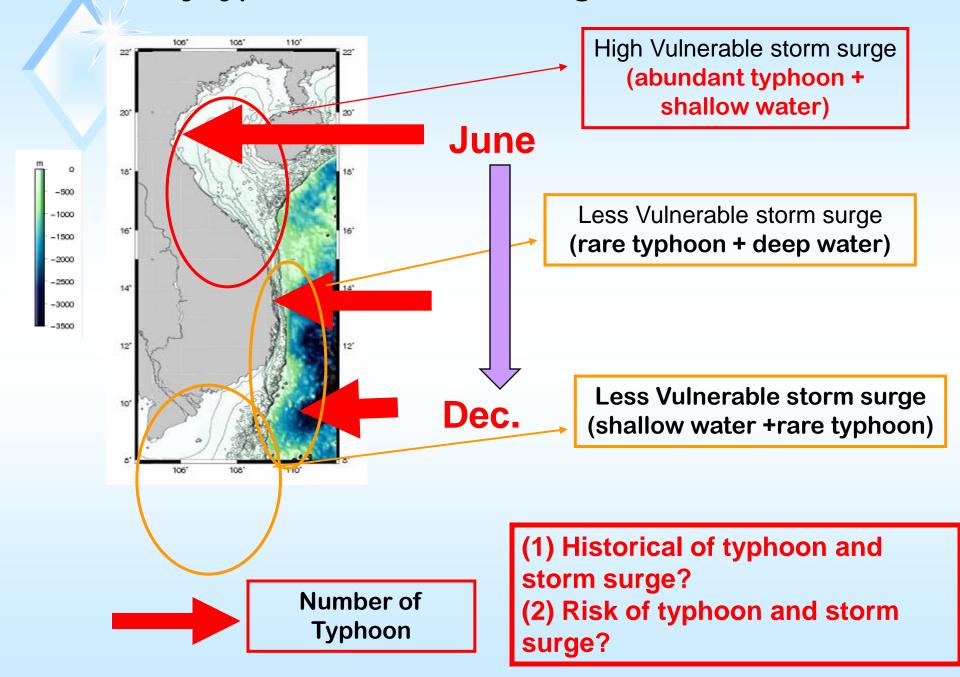
ISBN xxx-xxxx-xx-x


RISK OF TYPHOON AND STORM SURGES IN COASTAL AREAS OF VIETNAM

Hoang Duc Cuong, Nguyen Ba Thuy, Nguyen Van Huong, Du Duc Tien Vietnam National Center for Hydro-meteorological Forecasting (NCHMF)

Contents

- 1. Methods and data
- 2. Typhoon and storm surge in the period 1951-2016
- 3. Risk of typhoon and storm surge
- 4. Conclusions and Future study

Possibility typhoon and storm surge in Vietnam

Historical typhoon not enough for assessment typhoon and storm surge

Data and methods

Data:

- Typhoon: 1951-2016, from NCHMF and JMA
- Storm surge: Observation data and numerical simulation

Methods:

- -Monter Carlo Model: To contract set of bogus typhoons in 1000 year.
- SuWAT Model (Surge Wave and Tide): To calculate storm surge

The Monte-Carlo method (to contract set of bogus typhoon)

Historical typhoon (too short)

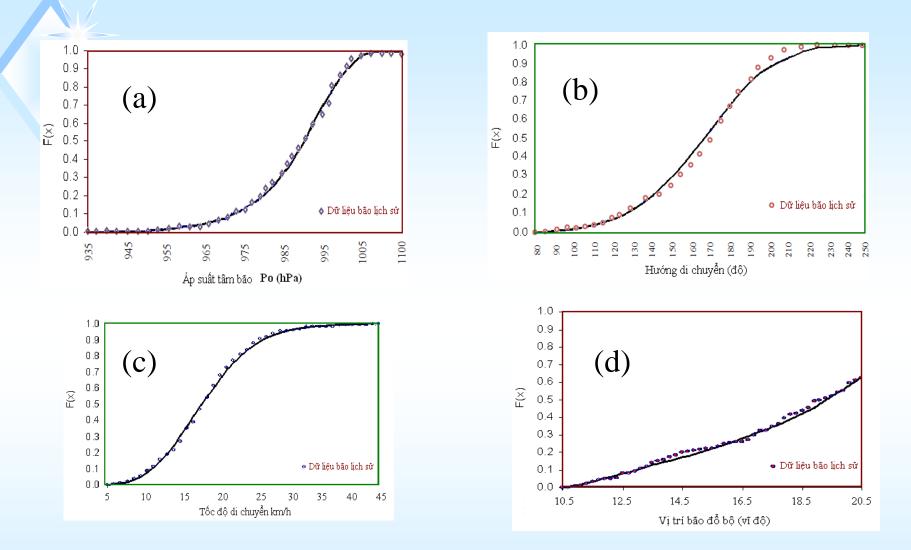
Bogus typhoon in 1000 year (enough for asses the risk of typhoon and storm surge) Setup the area

Collect, analyze and, estimate mean values of typhoon parameter (position landfall, pressure, moving direction, speed of moving) in 1951-2016

Determine the probability functions of typhoon parameters

 $\hat{\mathbb{I}}$

Set of bogus typhoon parameters


Steps to contract a set of bogus typhoon

Area 2 Area 1 Ghi chù Quỳ đạo bảo

The areas for normalize historical typhoon parameters

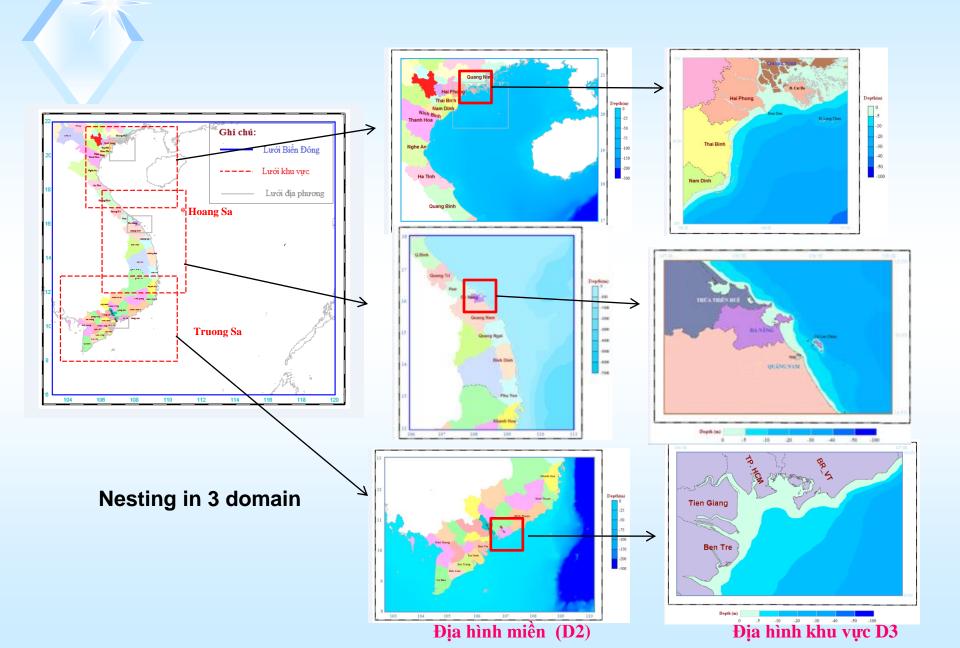
Example of normalize historical typhoon parameters

	Area				Area 3			Area 2		Area 1				
Н	dd	M	Y	φ	λ	θ [°]	V _f [km/h]	P _o [hPa]	θ [°]	V _f [km/h]	P _o [hPa]	θ [°]	V _f [km/h]	P _o [hPa]
10.71	24	6	2011	106.6	20.3	192.9	16.9	989.8	162.9	14.1	995.6	139.2	21.70	1004.5
8.76	30	7	2011	105.9	19.3	199.6	30.5	992.0	170.2	22.6	985.0	157.2	19.90	993.8
3.71	30	9	2011	107.1	20.8	154.2	14.2	988.7	157.5	24.1	970.0	165.1	22.60	980.6
13.56	17	8	2012	107.5	21.1	159.3	30.8	987.0	163.1	29.3	972.5	170.1	18.40	993.6
9.47	6	10	2012	109.3	13.1	181.8	24.2	1003.6	194.7	28.3	998.0	198.9	15.40	994.2
17.50	28	10	2012	106.5	20.3	162.4	14.2	975.7	156.1	23.0	971.6	157.2	23.70	998.0
11.95	23	6	2013	106.6	20.3	159.9	9.9	994.8	174.9	22.6	992.0	171.9	16.60	999.4
0.58	2	7	2013	109.9	21.5	127.5	25.6	990.7	142.6	25.3	985.0	156.9	25.85	1000.9
1.48	3	8	2013	107.5	21.1	160.2	33.6	986.2	129.8	24.8	987.5	158.2	13.70	1000.3
9.47	30	9	2013	106.5	17.6	172.5	34.8	976.0	175.4	18.6	966.2	167.2	12.70	994.1
6.35	14	10	2013	108.6	15.6	179.2	19.4	991.2	158.6	14.6	965.0	174.3	18.30	981.8
7.18	11	11	2013	107.3	20.9	154.2	21.5	976.6	127.0	30.6	957.5	168.8	34.90	952.8
22.00	18	7	2014	108.5	21.5	156.9	23.2	971.0	151.8	23.7	940.0	965.5	151.80	23.7
13.37	16	9	2014	107.6	21.2	179.8	30.2	985.4	161.4	33.7	962.5	163.7	26.30	981.9
16.56	29	10	2014	109.3	13.3	178.0	13.6	994.0	164.3	17.9	991.0	165.4	26.90	999.8

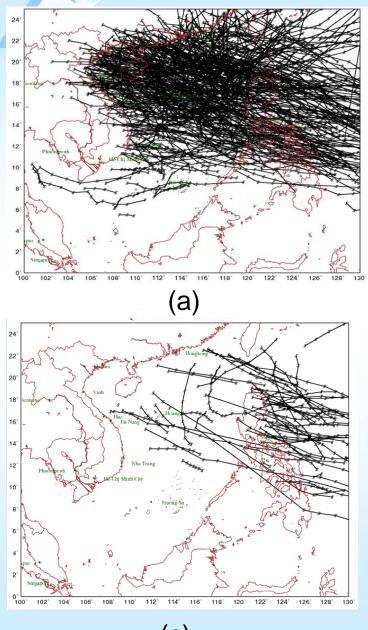
Probability function of air pressure (a), direction moving (b), moving speed (c) and position landfall (d)

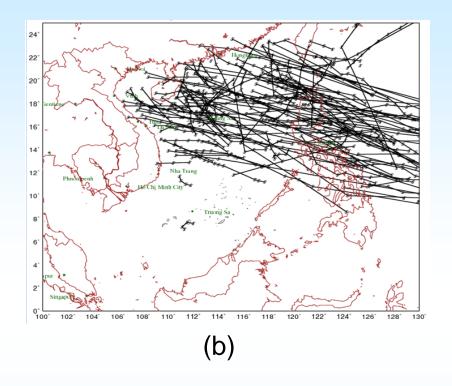
A coupled of surge wave and tide (SuWAT) model

Two Dimensional Long wave Model + SWAN model


$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$$

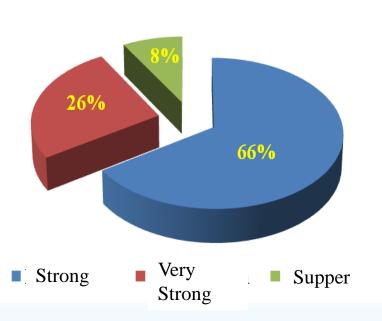
$$\begin{split} \frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{d} \right) + \frac{\partial}{\partial y} \left(\frac{MN}{d} \right) + g d \frac{\partial \eta}{\partial x} \\ &= f N - \frac{1}{\rho_w} d \frac{\partial P}{\partial x} + \frac{1}{\rho_w} \left(\tau_s^x - \tau_b^x + F_x \right) + A_h \left(\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial y^2} \right) \\ \frac{\partial N}{\partial t} + \frac{\partial}{\partial x} \left(\frac{NM}{d} \right) + \frac{\partial}{\partial y} \left(\frac{N^2}{d} \right) + g d \frac{\partial \eta}{\partial y} \\ &= -f M - \frac{1}{\rho_w} d \frac{\partial P}{\partial y} + \frac{1}{\rho_w} \left(\tau_s^y - \tau_b^y + F_y \right) + A_h \left(\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2} \right) \end{split}$$


 τ_s The wind stress (including wave dependent drag)


F: The wave force- which correspond to the gradients of wave-induced radiation stress

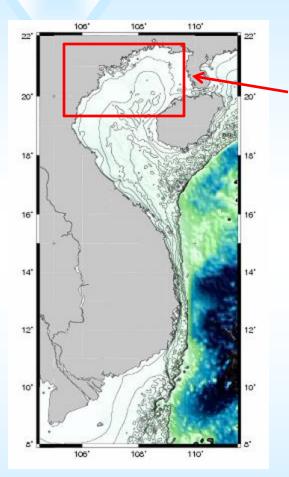
Computational domains for storm surge simulation

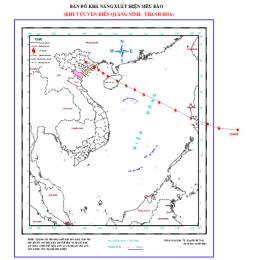
RESULTS - TYPHOONS IN 1951-2016:

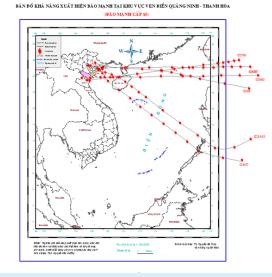


The track of typhoons in the East Sea of Vietnam: (a) Level 8 - 11, (b) Level 12-13 and (c) Level 13 and higher

(c)

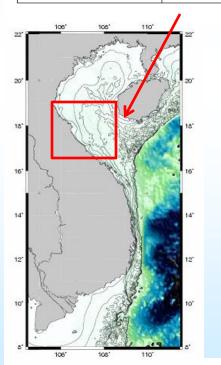

RESULTS - TYPHOONS ININTENSITY (Beaufort Scale) IN THE PERIOD 1951-2016

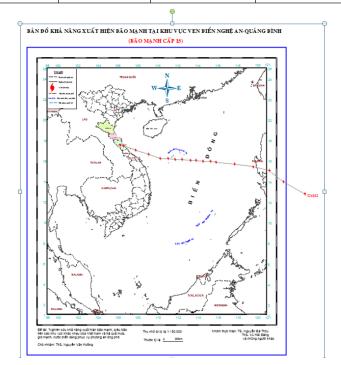

The number of typhoons affecting areas of the East Sea and coastal area of Vietnam in the period of 1951-2016.


+				!
	Area	Level 8 - 11	Level 12 - 13	≥ Level 13
	Quang Ninh - Ha Tinh	317	23	2
	Quang Binh- Phu Yen	307	55	11
	Khanh Hoa- Binh Thuan	94	12	1
	Ba Ria Vung Tau - Ca Mau	46	2	0
	North East Sea	1816	339	90
	Central East Sea	747	97	41
	South East Sea	144	6	0
	Total	3471	534	145

Number of typhoon landfall the coastal area of Quang Ninh-Thanh Hoa

	Province	Level	Level	Level	Level	Level	Level	Total
	Province	10-11	12	13	14	15	≥16	
	Quảng Ninh	86	113	5	3	4	(1)	212
•	Hải Phòng	38	26	2	1	0	0	67
	Thái Bình	36	30	3	1	0	0	70
	Nam Định	34	24	1	1	0	0	60
	Ninh Bình	3	2	1	1	0	0	7
	Thanh Hóa	55	48	3	1	2	0	109
	Total	252	243	15	8	6	1	

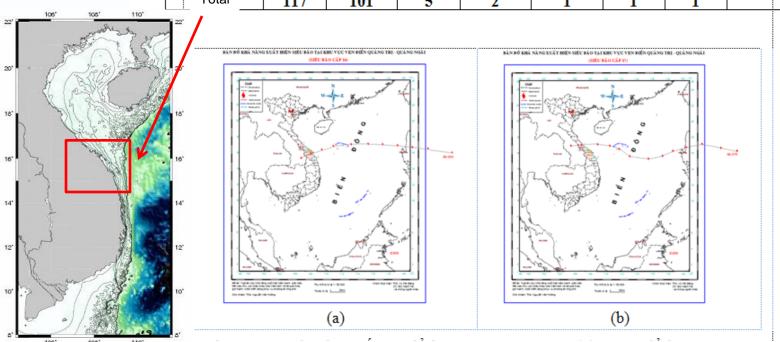




The track of bogus typhoon landfall at: level 16 (a) and 15 (b) of Quang Ninh province

Number of typhoon landfall the coastal area of Nghe An-Quang Binh

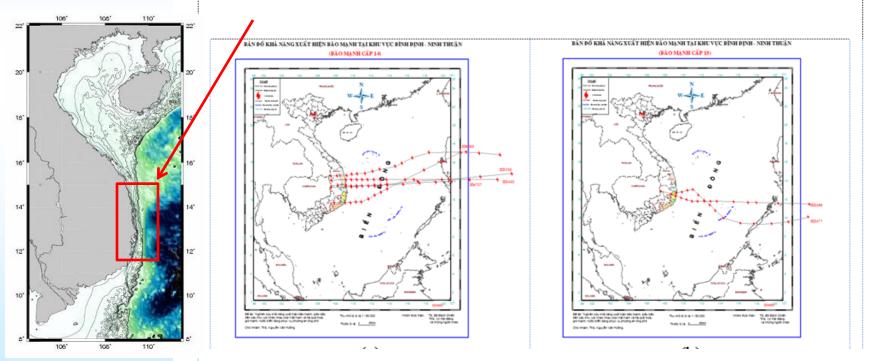
Province	Level 111	Level	Level 13	Level 14	Level	Level ≥16	Total
Nghệ An	39	22	1	2	0	0	64
Hà Tĩnh	48	52	4	1	0	0	105
Quảng Bình	45	31	2	1		0	80
Total	132	105	7	4	1	0	



The track of bogus typhoon landfall at level 15 of Quang Binh province

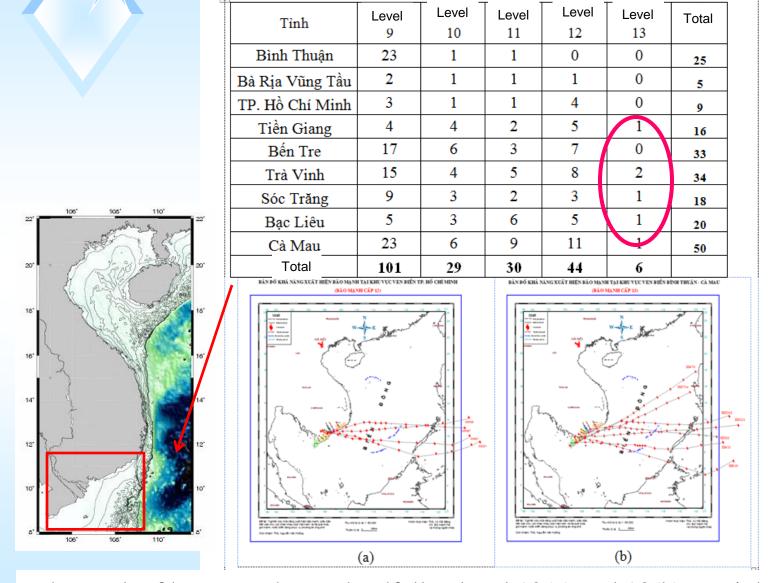
Number of typhoon landfall the coastal area of Quang Tri-Quang Nghai

Province	Level 10-11	Level 12	Level	Level	Level 15	Level ≥ 16	Level	Total
Quảng Trị	20	30	1	0	0	0	1	52
Huế	16	20	1	0	1	0	0	38
Đà Nẵng	16	9	0	1	0	0	0	26
Quảng Nam	30	23	2	0	0	1	0	56
Quảng Ngãi	35	19	1	1	0	0	0	56
Total	117	101	5	2	1	1	1	

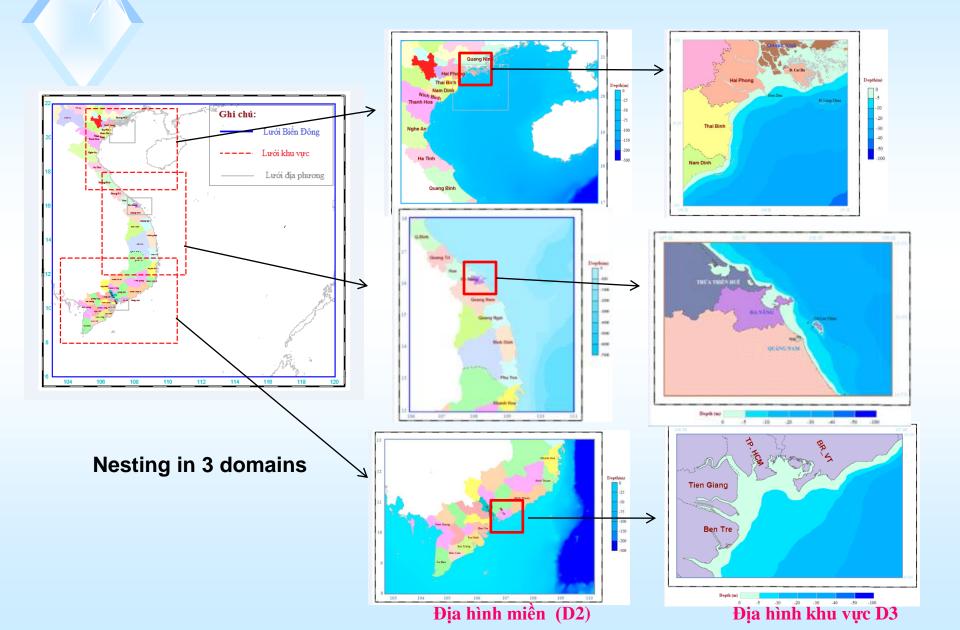


The track of bogus typhoon landfall at level 16 to Quang Nam (a) and level 17 to Quang Tri province (b)

Number of typhoon landfall the coastal area of Binh Dinh-Ninh Thuan


tung oo Bana Bana Tilana Tilana										
Province	Level	Level	Level	Level	Level 14	Level	Total			
Bình Định	20	20	25	1	2	0	68			
Phú Yên	11	9	26	2	2	0	50			
Khánh Hòa	16	15	36	0	0	2	69			
Ninh Thuận	9	2	15	0	1	0	27			
Total	56	46	102	3	5	2				

VUNG DO BINN TJINN - IVINN TNUAN I


The track of bogus typhoon landfall at level 14(a) and level 15(b) to Binh Dinh-Ninh Thuan

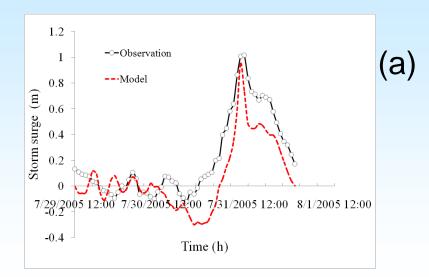
Number of typhoon landfall the coastal area of Binh Thuan-Camau

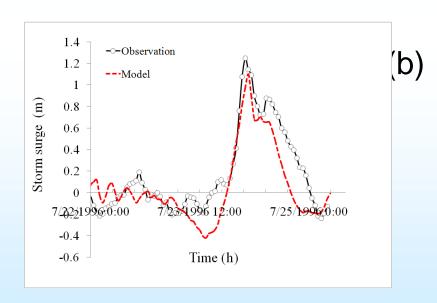
The track of bogus typhoons landfall at level 12(a) and 13(b) to Binh Thuan-Camau

Computational domains for storm surge

RESULTS – Validation the SuWAT model on storm

surge

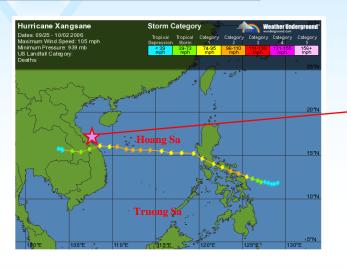

The North coast:



Frankie (1986)

Hondau station

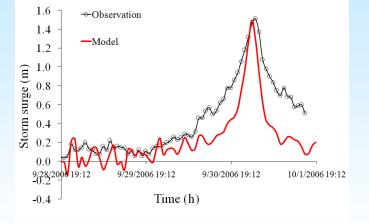
Measured and computed storm surge at Hondau station Induced by typhoon Frankie 7/1996 (a) and typhoon Washi 7/2005 (b)

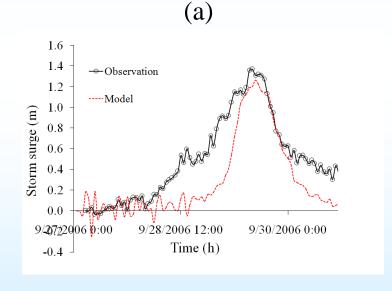

RESULTS – Validation the SuWAT model on storm

Sontra

station

surge simulation


The Middle coast:

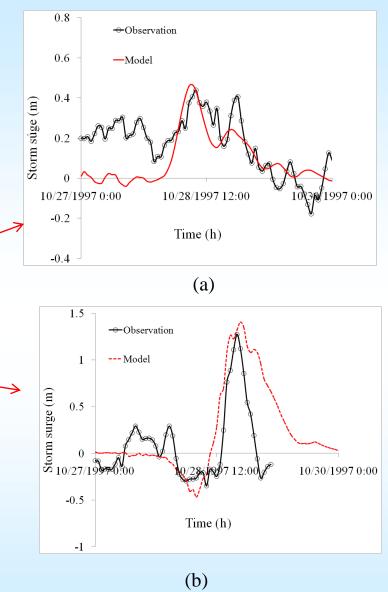


Xangsane (2006)

Ketsana (2009)

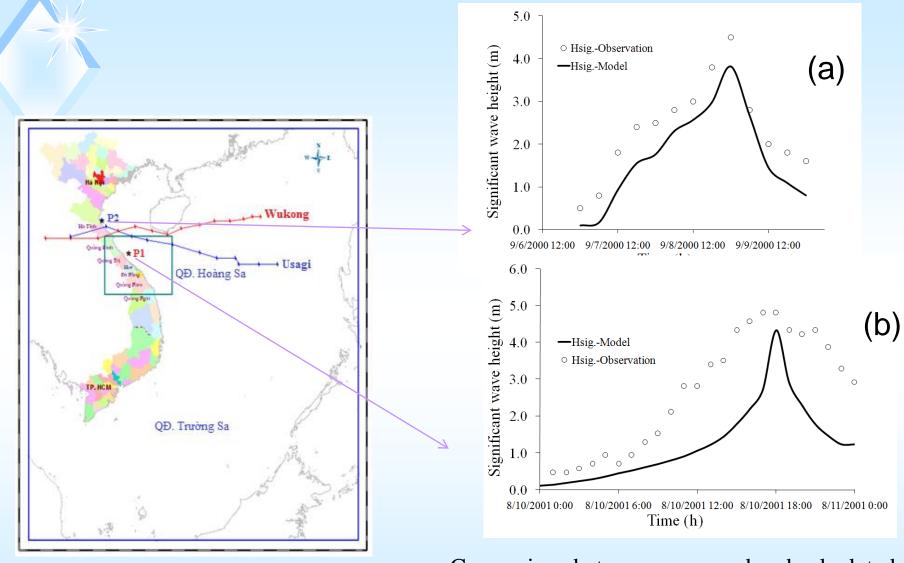
(b)

Measured and computed storm surge at Son Tra station Induced by typhoon Xangsane 9/2006 (a) and typhoon Ketsana 9/2009 (b)

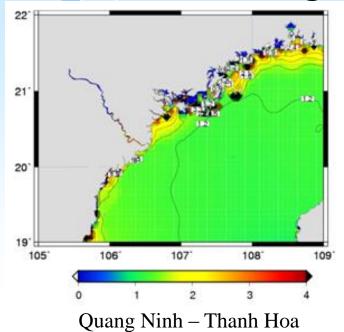

RESULTS – Validation the SuWAT model on storm

surge simulation

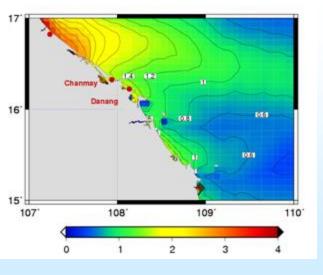
The South coast:



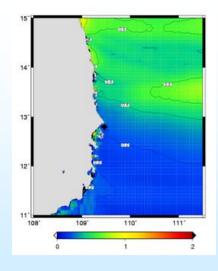
Track of typhoon Linda


Measured and computed storm surge at Son Tra (a) and Ghenh Hao (b) Induced by typhoon Linda 11/1997

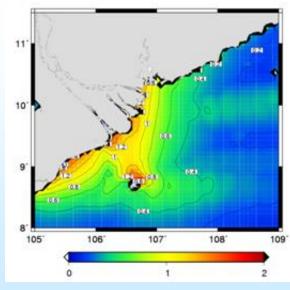
Validation the Model on storm Wave


Comparison between measured and calculated significant wave during Typhoon Wukong (9/2000) (a) and Usagy (8/2001) (b)

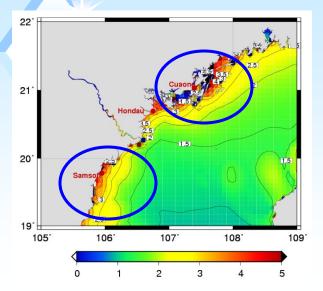
Maximum storm surge in the period of 1951-2016



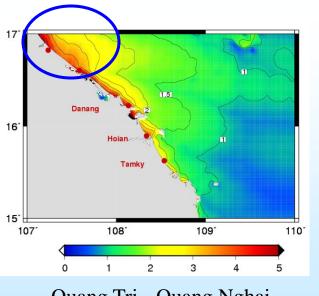
19° Cuahel
18° 106° 107° 108° 109°
0 1 2 3 4


Nghe An – Quang Binh

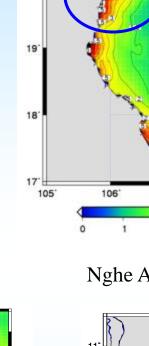
Quang Tri - Quang Nghai



Binh Đinh - Ninh Thuan

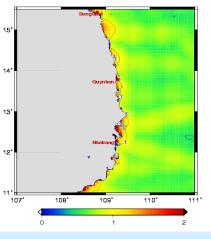


Binh Thuan – Camau

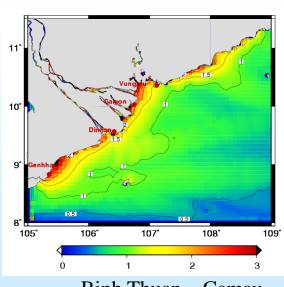

Risk of storm surge (based on 1000 years typhoons)

Quang Ninh – Thanh Hoa

Quang Tri - Quang Nghai



20


Nghe An – Quang Binh

107

108

Binh Đinh – Ninh Thuan

Binh Thuan – Camau

Conclusions

- The coastal provinces from Quang Ninh to Thanh Hoa experienced storm surges up to 3.0m. The South area of Nghe An Quang Binh and the North of Quang Tri-Quang Nghai storm surges can be reached over 4,0m. Binh Thuan-Ca Mau also recorded storm surges up to 1.5m.
- In the 1,000 years there were 6213 typhoons, of which 4678 typhoon hit the coastal region from Quang Ninh to Ca Mau. In particular, Quang Ninh-Thanh Hoa of level 16, Nghe An-Quang Tri of level 16, Quang Binh-Phu Yen of level 17, Binh Dinh-Ninh Thuan of level 15 and Binh Thuan Ca Mau of level 13.
- The risk of storm surges in the 1000 year: Highest storm surges are Quang Ninh-Hai Phong (4.5 m), Thanh Hoa-Nghe An (4.0m), Quang Tri (5.0m). The coastal area of Southen part are also at risk of storm surges up to 2.5m.

Future study

- -Coastal inundation due to tide, storm surge and wave for each coastal area should be done in future.
- For strong/supper typhoon the model for operational forecasting storm surge should be coupled with tide and wave