The Characteristics of RSDs before and after the Landing Typhoon Meranti

Wen LIN

Fujian Meteorological Science Institute
Track of Meranti (2016)
LPA10 disdrometer

similar to the PARSIVEL disdrometer

64 drop sizes (0.1-30mm)
32 velocities (0.2-20m/s)
laser measurement area (63cm²)

Output data: raindrop size distribution (RSDs)
Quality-control

1. Remove:
 • Strong wind effects
 • Splashing
 • Margin fallers

Friedrich et al. (2013)
Quality-control

2. minimize instrument error (Battaglia et al, 2009)

\[
D = \begin{cases}
D_d & (D_d \leq 1.00\text{mm}) \\
D_d \times (1.075 - 0.075D_d) & (1.00\text{mm} < D_d \leq 5.00\text{mm}) \\
0.7 \times D_d & (D_d > 5.0\text{mm})
\end{cases}
\]

where \(D \) is the equivalent sphere diameter and \(D_d \) is the diameter measured by disdrometer.
Characteristics of echo

- in the front side of outer rainband
• major rainband
residual cloud
Characteristics of RSDs
Gamma distribution:

\[N(D) = N_0 D^\mu \exp(-\lambda D) \]

\(\mu \): shape
\(\lambda \): slope
\(N_0 \): Intercept, depend on \(\mu \)

Widely used in:
cloud-model
Dual polarization radar measure precipitation
Gamma distribution

\[N(D) = N_0 D^\mu \exp(-\lambda D) \]

- **Weakness:** \(N_0 \) not independent

Normalized Gamma distribution (Bringi et al. (2003))

\[N(D) = N_w \left(\frac{D}{D_m} \right)^\mu \exp\left[-(4 + \lambda) \frac{D}{D_m} \right] \]

\(D_m \): mass mean diameter
\(N_w \) only depend on \(D_m \) and LWC

Normalized Gamma distribution described by \(\mu, N_w \) and \(D_m \)
Convection rain samples:

Oceanic convection:
- $D_m = 1.5 - 1.75 \text{ mm}$
- $\log_{10}(N_w) = 4 - 4.5$

Continental convection:
- $D_m = 2 - 2.75 \text{ mm}$
- $\log_{10}(N_w) = 3 - 3.5$

Stratiform rain samples:
- Approximate linear distribution

Oceanic convection:
- Tiny graupel or smaller rimed ice particles

Continental convection:
- Large dry snowflakes
In Meranti

- Stratiform (S1) → oceanic convective-stratiform mix clouds (S2) → oceanic convective (S3) → oceanic convective-stratiform mix clouds (S4-6) → stratiform (S7)
outcomes

From the front side of rainband to the central region then to the rear side or residual cloud of Typhoon Meranti:

• The top of radar echo and reflectivity both increased when the Meranti moving closely, and then decreased during its moving away.

• Meanwhile, the number concentration and spectrum width of RSDs also exhibited the same features as the top of radar echo and reflectivity.

• Moreover, the precipitations were produced by stratiform → oceanic convective-stratiform mix clouds → oceanic convective → oceanic convective-stratiform mix clouds → stratiform.
Thank you