Recent Improvement of TC Analysis based on MW Satellite data

Ok Hee KIM National Meteorological Satellite Center/ KMA

ESCAP/WMO Typhoon Committee Technical Conference and Fiftieth Annual Session of Typhoon Committee 26 Feb. ~ 3 Mar. 2018, Ha Noi, S.R of Viet Nam

TY 1330 HAIYAN from ISS

Using SNPP/VIIRS DNB image at night

Using ATOVS vertical profile of temperature

Wind radius of 15m/s based on multi-MW

Developing TC analysis skills for COMS-2A

Basic images for TC Center analysis

- Basic channel Images to decide TC center: IR, SWIR & VIS of COMS, Geo, Sat.
- Limitations of analysis of low level cloud by IR1 and VIS
- At night it is highly dependent on IR images

VIS

RGB Composite IR1+VIS

Enhanced IR1

Comparison of TC positions

 Large distance between central positions of TC by agency in generating, developing & decaying time
 COMS IR 20161005 1445UTC

<TC Center estimation using ASCAT wind vector>

Overlapping ASCAT wind with COMS image

- Overlap wind vector of ASCAT over the cloud image of COMS
- RGB composite images with IR & VIS at day and IR & SWIR at night with COMS
- Animated images for several hours

Overlapping multi channels with COMS data

To estimate TC position more clearly, we use many RGB composite
Overlapping multi-MW data over convective cloud images

Center of cyclonic vorticity of convective cloud

Center of convective cloud line or eye wall with MW

COMS EIR+ASCAT SSW

Center of ASCAT SSW with convective cloud

Center of convective cloud line or eye wall with MW

TC Center estimation in generating time

Possibility that the center is located inner red circle
It is difficult to decide one point using IR images only

TC Center estimation in generating time

- Possibility that the center is located inner red circle
- * It is still difficult to decide one point inside Cb cluster using VIS images MSC

TC Center estimation using ASCAT wind

We can estimate almost certain TC center position with ASCAT wind vector
 It is located at the intersection area bt. northeasterly and southwesterly wind around TC center => Re analysis point: 14.49, 147.91

TC Center estimation using NWP wind vector

- We need to move westward from real time position(+) of TC center using ASCAT and ECMWF, re-analysis wind vector(red area: strong wind(over 15m/s))
- ✤ Real time: 14.41, 148.65 => re-analysis: 14.49, 147.91

- Center of cyclonic vorticity of low level cloud on IR image
- Possibility that the center is logated inner red circle
- It is difficult to decide one point using IR images only

Center estimation in decaying time with wind

- ✤ ASCAT wind vector help us clearly to find center
- TC Center can be estimated at the intersection area btw. northeasterly and southwesterly wind based on ASCAT wind vector

<using SNPP/VIIRS DNB image at night>

Decision of Center position at night

- ✤ Low level Cloud can be detected better in SWIR than IR1 channel at night
- Insufficient channel images at night except IR and SWIR
- Suomi NPP/DNB image show us cloud line curvature clearly at night

COMS/SWIR+IR1 RGB Composite

Suomi NPP/DNB

Suomi NPP/DNB 2014-07-09 16:37UTC

SWIR: Short Wave Infrared

Decision of Center position at night

✤ RGB composite image with SWIR show us Low level Cloud at night

SWIR: Short Wave Infrared

Night Time: Overlapping Cloud

Moonlight probes cirrus (optically thick at IR wavelengths, but optically <u>thin</u> at VIS wavelengths), reflects off low-level liquid clouds, enabling superior low-level circulation analysis => TC position can be estimated more correctly with DNB visible image at night ¹⁶

< Using ATOVS vertical profile of temperature >

ATOVS and ATMS sensor

	NOAA	Metop	NPP		
Sensor	ATOVS	ATOVS	CrIS & ATMS		
Spatial resolution	48km	48km	50km		
Vertical resolution	42 levels	42 levels	100 levels		
Swath	2200km	1650km	2300km		
Frequency	23~183GHz, V polarization	23~183GHz H & V polarization	23~183GHz H & V polarization		

- Advanced TIROS Operational Vertical Sounder (ATOVS) consists of High Resolution Infrared Radiation Sounder (HIRS), the Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B for retrieving temperature, humidity and ozone sounding in all weather conditions
- Vertical Profile of temperature of ATOVS and ATMS
- Warm core of vertical temperature in TC

Vertical Profile of Tb: Warm core in TC

NOAA/ATOVS, S-NPP/ATMS Temperature :

Temperature of 1000hPa~100hPa levels, Interpolation Tb between levels

- Product Tb anomaly around TC center position in a selected area Tb anomaly: $\Delta T_i = T_i - \overline{T_i}$
- Product Warm core from Tb anomaly around TC center
- Useful to analysis TC center tilted TC with vertically

NOAA ATOVS Temp. (2016.07.06 22:08 UTC)

Auto scan in selected area

Tb anomaly Cross Section

Vertical Profile: Warm core in TC

✤ NOAA/ATOVS Temperature : Warm core(anomaly) with vertical profile in TC

<Wind radius of 15m/s based on multi-Microwave>

Multi - Microwave Sensors

✤ 6 MW Sensors : METOP-A/ASCAT, METOP-B/ASCAT,GCOM-W1/AMSR2, GPM/GMI, CORIOLIS/WINDSAT, DMSP/SSMIS

Sensor description

Sensors	ASCAT	AMSR2	GMI	SSMIS	WINDSAT
Туре	Active Scatterometer	Passive radiometer	Passive radiometer	Passive radiometer	Passive radiometer
Frequency	5.255GHz, V pola rization	6.93GHz H & V polarization	10.65GHz H & V polarization	18.7GHz ~, V polarization	10.7GHz~, H & V polarization
Swath	500km, 2path	1450km	931km	1700km	980km
Resolution	25km	50km	32km	25km	25km
fundamental conception to produce SSW	backscattered signal is spectrally analysed and detected	Reflectance signal depended on sea surface roughness	Reflectance signal depended on sea surface roughness	Reflectance signal depended on sea surface roughness	Reflectance signal depended on sea surface roughness
wind	10m wind speed and direction	10-m windspeed	10m windspeed	10-m windspeed	10-m wind speed and direction
Range of wind speed	0 ~ 50m/s	0 ~ 40m/s	0 ~ 40m/s	0 ~ 50m/s	3 ~ 25m/s

SSW based on MW Satellite

- ✤ Retrieved sea surface wind(SSW) speed
- under rain-free and rain conditions using the low frequency bands of passive microwave(PMW) satellite observations
- GCOM-W1/AMSR-2(6.9 GHz), GPM/GMI(10.7 GHz)

(20150821 00UTC)

•MW: Microwave

R15 & R25 based on multi-MW

R15 & R25 products based on multi-MW satellite available AMSR2, GMI, ASCAT, WINDSAT, SSMIS

METOP-A/ASCAT 2015.9.17. 2303UTC

Red : R15m/s wind Purple : R25m/s wind

R15 & R25 based on NWP

✤ R15 & R25 based on MW are similar to NWP

- TC size and azimuth of long and short distance
- Estimated SSW of NWP in empty and no observation based on MW

ECMWF NWP Wind 2017.10.16. 1200UTC

Red : R15m/s wind Purple : R25m/s wind

[ECMWF Wind field] 2015-09-18 00:00UTC(09.18 09:00KST) KMA

15m/s Wind - MDist : 178, LDist : 234(NNW), SDist : 108(S) 25m/s Wind - MDist : 58, LDist : 95(NW), SDist : 6(WSW) Unit : km

•NWP: Numerical Weather Prediction

R15 & R25 based on multi-MW

- Retrieved SSW speed under rain-free and rain conditions using multi-MW
- Wind products close to observation at weaken state of TC
- Production of R15 & R25 in asymmetrical TC structure
- NWP wind data compensate the wind data of no observation area of MW

Composite Wind data between MW and NWP

Combine MW and NWP wind data to identify in no observation area of satellite data

Adjustment of R15 based on multi wind data

2016. 10. 1. 18UTC

COMS IR 351km(Average) GCOMW1/AMSR2 355km(4 quadrant long axis) ECMWF 339km(4 quadrant long axis) => R15 : about 350km

<Developing TC analysis skills with COMS-2A>

Development of the next COMS

- Development of the geo. Multi-purpose satellite based on the National Space Development Plan in S. KOREA.
- Next Meteorological Satellite is planned to be launched in 2018 and 2019

COMS-2A AMI sensor

AMI(Advanced Meteorological Imager) (cf. AHI/Himawari-8/9, ABI/GOES-R)

	Wavelengh(µm)					
Channels	AMI (GK-2A)	ABI (GOES-R)	AHI (HW8)	MI (COMS)	SEVIRI (MSG)	MODIS
1(VIS) blue	0.470	0.470	0.46			0.466 (B03)
2(VIS) green	0.511		0.51			0.554 (B04)
3(VIS) red	0.640	0.640	0.64	0.675	0.6	0.647 (B01)
4(VIS)	0.856	0.865	0.86		0.8	0.857 (B02)
5(NIR)	1.380	1.378				1.382 (B26)
6(NIR)	1.610	1.610	1.6		1.6	1.629 (B06)
NIR		2.250	2.3			2.114 (B07)
7(IR)	3.830	3.90	3.9	3.75	3.9	3.788 (B20)
8(WV)	6.241	6.185	6.2		6.2	6.765 (B27)
9(WV)	6.952	6.95	7.0	6.75		6.765 (B27)
10(WV)	7.344	7.34	7.3		7.3	7.337 (B28)
11(IR)	8.592	8.50	8.6		8.7	8.529 (B29)
12(IR)	9.625	9.61	9.6		9.7	9.734 (B30)
13(IR)	10.403	10.35	10.4	10.8	10.8	B30+B31
14(IR)	11.212	11.20	11.2			11.019 (B31)
15(IR)	12.364	12.30	12.3	12.0	12.0	12.032 (B32)
16(IR)	13.31	13.30	13.3		13.4	13.365 (B33)

NMSC

COMS MI vs. COMS-2A AMI

Developing TC analysis skill with COMS-2A

ADT Improvement TC centering technique using derived winds

Estimating the intensity change of TC : OHC, MPI, Vertical Shear etc.

Supporting Impact forecast of TC

Percentile Analysis for historical typhoon

Multi Satellite-base 3D Winds

Summary

- With multi-Microwave Satellite data:
- Low level Cloud can be detected better in SWIR than IR1 image at night
- Overlap ASCAT and NWP wind, or MW 37 and 89Ghz with COMS images
- Estimation certain TC center position with ASCAT wind vector
- Analysis convective cloud line or Eye wall with 37Ghz and 89Ghz of AMSR2 & GMI
- Suomi NPP/DNB image show us cloud line curvature clearly at
- > NOAA/ATOVS : warm core(anomaly) with vertical profile of temperature in TC
- Production of R15 & R25 based on multi-MW almost every 3 hours amd NWP
- Wind is close to observation at weaken state of TC and in asymmetrical TC structure
- NWP data compensate the wind of no observation area of MW
- With Next Meteorological Satellite data:
- Developing typhoon analysis skills for COMS-2A satellite application
 - Supporting Impact forecast of TC
 - Estimating the intensity change of TC: OHC, MPI, Vertical Shear etc.
 - Multi Satellite-base 3D Winds

Thank you

KM

National Meteorological Satellite Center/ KMA

국가기상위성센터