Seasonal Tropical Cyclone Forecast – Part 1

Lee Sai Ming
Hong Kong Observatory, Hong Kong, China

Typhoon Committee Roving Seminar
30 Nov – 3 Dec 2010, Thailand
Seasonal TC forecast Part 1 - Contents

- Introduction
- HKO’s experience
- Recent attempts to improve TC forecast
- Data & methodology of current method
- Verification results

Seasonal TC forecast Part 2 - Contents

- Application of the forecast method to other coastal cities (Manila & Da Nang)
- Real life examples from HKO
What I do

- My division: Climate Change and Climate Prediction
- My team: Long range forecast
 1. Annual outlook for Hong Kong
 2. Seasonal forecast (4 times a year) for HK
 3. Internal monthly forecast
 4. Joint pilot project on forecasting yield collected at reservoirs
- ENSO update
 1. Internal and for general public
The need for monthly and seasonal TC forecast

Long-range TC forecast supports:

- Risk assessment
- Disaster prevention / reduction and preparedness planning
- Policy decision
- Product pricing, e.g. insurance
WMO IWTC
(International Workshop on Tropical Cyclones)

- To examine current knowledge, forecast and research trends
- IWTC VII was held in La Reunion, 15-20 Nov 2010
- IWTC VI was held in San Jose, Costa Rica, Nov 2006
- WMO Bulletin 56 (4): Seasonal Tropical Cyclone Forecasts
WMO Bulletin 56 (4) – a very comprehensive overview of seasonal TC forecasts

<table>
<thead>
<tr>
<th>Group</th>
<th>Basins</th>
<th>Type</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>City University of Hong Kong, China (CityU)</td>
<td>Western North Pacific</td>
<td>Statistical</td>
<td>http://aposf02.cityu.edu.hk</td>
</tr>
<tr>
<td>Colorado State University, USA (CSU)</td>
<td>Atlantic</td>
<td>Statistical</td>
<td>http://hurricane.atmos.colostate.edu</td>
</tr>
<tr>
<td>Cuban Meteorological Institute (INSMET)</td>
<td>Atlantic</td>
<td>Statistical</td>
<td>http://www.met.inf.cu</td>
</tr>
<tr>
<td>European Centre for Medium-Range Weather Forecasts (ECMWF)</td>
<td>Atlantic, Australian, Eastern North Pacific, North Indian, South Indian, South Pacific, Western North Pacific</td>
<td>Dynamical</td>
<td>http://www.ecmwf.int (collaborating agencies only)</td>
</tr>
<tr>
<td>International Research Institute for Climate and Society (IRI)</td>
<td>Atlantic, Australia, Eastern North Pacific, South Pacific, Western North Pacific</td>
<td>Dynamical</td>
<td>http://iri.columbia.edu/forecast/tc_fcst/</td>
</tr>
<tr>
<td>Macquarie University, Australia</td>
<td>Australia / southwest Pacific</td>
<td>Statistical</td>
<td>http://www.iges.org/ellfb/past.html</td>
</tr>
<tr>
<td>Meteorological Office, United Kingdom (MetOffice)</td>
<td>North Atlantic</td>
<td>Dynamical</td>
<td>http://www.metoffice.gov.uk/weather/tropicalcyclone/northatlantic</td>
</tr>
<tr>
<td>National Climate Centre, China</td>
<td>Western North Pacific</td>
<td>Statistical</td>
<td>http://bcc.cma.gov.cn</td>
</tr>
<tr>
<td>Tropical Storm Risk (TSR)</td>
<td>Atlantic, Western North Pacific, Australian region</td>
<td>Statistical</td>
<td>http://tsr.mssl.ucl.ac.uk</td>
</tr>
</tbody>
</table>
Websites of forecast producing centres

Methods used by centres:
- statistical (in use since the early days)
- dynamical (getting more important)

Forecast products:
- number of TC / named storms
- ACE index (Accumulated cyclone energy)
- mean position of TC
- number / probability of landfalling TC
Seasonal TC forecast

- No. of TC / named storms / ACE index over an ocean basin
 - No region-specific information
 - How to use these forecasts?

- No. of TC landfalls
 - TC affecting a city does not need to make landfall there
 - 2 examples from Hong Kong
Typhoon Chanthu, July 2010

Chanthu made landfall near Leizhou Peninsula: ~ 400 km from HK
Typhoon Hagupit, September 2008

Landfall position: Leizhou Peninsula ~ 400 km from HK
Heavy rain brought by Typhoon Chanthu (July 2010) (more than 100 mm of rainfall recorded in a couple of hours)
Flooding in Tai O after Typhoon Hagupit (Sep 2008)
(storm surge caused by Hagupit)

(courtesy of TVB)
Tropical Depression can also be devastating

Rainfall on 13 Sep 2006: 248.3 mm
Strong Wind Signal No. 3
Landslip Warning
Red Rainstorm Warning
32 reports of flooding
9 reports of landslide
20 trees blown down
>20 villagers trapped by flood water
Train and ferry services interrupted
18 flights cancelled, 277 delayed
HKO’s experience

- HKO has been issuing the annual outlook for HK since 2001 (disseminated over the Internet)
 1. Yearly rainfall of HK in tercile category (above normal, near normal, or below normal)
 2. Yearly number of TC “affecting” HK, e.g. 5-6 TC

- TC “affecting” HK = TC necessitating the issuance of local warning signals
HKO’s experience

- Old methodology: an ENSO-based conceptual model:
 - El Niño year – fewer TC affecting HK
 - La Niña year – more TC affecting HK

- For each ENSO situation (El Niño, La Niña, neutral), there is an empirical distribution of yearly no. of TC affecting HK

- Prob of no. of TC affecting HK =
 \[\sum \text{prob(no. of TC affecting HK | ENSO situation of the year)} \times \text{prob(ENSO situation)} \]
 [summation over the three possible ENSO situations]
Problems with the old methodology

- Classification of the ENSO status of the year can be difficult at times: e.g. 2010
 - El Niño during the 1st half of the year
 - La Niña during the 2nd half of the year

- High uncertainty in the ENSO forecast (the annual outlook is issued in March)

- \[\sum \text{prob(no. of TC affecting HK | ENSO situation of the year)} \times \text{prob(ENSO situation)} \]
 - A strong tendency towards the climate normal

- TC “affecting” HK = TC necessitating the issuance of local warning signal
 - Subjective judgment involved, not entirely objective

- A recent study shows that El Niño’s impact on TC activity affecting HK (another definition) is not significant. La Niña’s impact is confined to late season.
Recent attempts

- Can we apply the Poisson regression model to do the TC forecast?
- Attempted a Poisson regression model trained by actual Niño 3.4 SST anomaly
 - A perfect prognosis approach
 - Only one single predictor
- Dynamical model output (digital/numerical data) are available on the web. Can they be utilized to formulate the Poisson regression model? How?
A recent investigation

- A statistical-dynamical method to forecast monthly, seasonal and annual TC activity “affecting” a region/city.

- Correlate regional TC activity with large scale dynamical climate model forecast

- The method is still evolving. Comments and suggestions are most welcome.
Data

- TC data source: HKO TC best track dataset (include all TC categories)
- Dynamical model data source: WMO designated Global Producing Centres for Long Range Forecasts
WMO GPC
http://www.wmo.int/pages/prog/wcp/wcasp/clips/ producers_forecasts.html

● Bureau of Meteorology (BoM), Australia
● China Meteorological Administration (CMA) / Beijing Climate Center (BCC)
● Climate Prediction Center (CPC), NOAA, USA [http://www.cpc.ncep.noaa.gov/]
● European Centre for Medium-Range Weather Forecasts (ECMWF)
● Japan Meteorological Agency (JMA) / Tokyo Climate Center (TCC) [http://ds.data.jma.go.jp/gmd/tcc/tcc/index.html]
● Korea Meteorological Administration (KMA)
● Meteo-France
● Met Office (United Kingdom)
● Meteorological Service of Canada (MSC)
● South African Weather Services (SAWS)
● Hydrometeorological Centre of Russia
TC activity affecting a city

- **Definition:** No. of TC coming within a certain range and a certain period of time
- **Hong Kong:** N_{500} [within 500 km of HK]
- **Long term mean of annual N_{500} ≈ long term mean of annual N_{sig} [issuance of warning signals]
Monthly N500 of Hong Kong

HK TC season ~
June to October
(N500 > 0.5)
Methodology

- N500 is a count parameter
- Can be modelled by the Poisson distribution

\[p(y, \lambda) = \frac{\lambda^y e^{-\lambda}}{y!} \quad y = 0, 1, 2, \ldots \]
Methodology

- N500 is a count parameter
- Can be modelled by the Poisson distribution

\[p(y, \lambda) = \frac{\lambda^y e^{-\lambda}}{y!} \quad y = 0, 1, 2, ... \]

- The Poisson dist. belongs to the family of exponential dist.

\[f(y; \theta) = s(y)t(\theta)e^{a(y)b(\theta)} \]

where \(a, b, s, t \) are known functions
The Poisson dist. can be written in the canonical form:

\[f(y; \theta) = \exp[a(y)b(\theta) + c(\theta) + d(y)] \]

where \(a(y) = y, b(\theta) = \log \theta, c(\theta) = \theta, d(y) = -\log y \)

We can formulate a generalized linear model to forecast the expected value of \(y \)

Generalized Linear Model (GLM)

\[g(E(Y_i)) = x_i^T \beta \]

\(Y_i \) = response variable
\(E \) = expectation of the dist.
\(g \) = link function (monotone, differentiable)
\(x_i \) = covariates or explanatory variables or predictors (p x 1 vector)
\(\beta \) = model parameters (p x 1 vector)
\(N \) = no. of realizations

This formulation is also known as Poisson regression model when \(Y_i \) comes from a Poisson distribution.
GLM is an extension of the classical linear regression model
In the classical linear model:
Y_i comes from a normal distribution
$g = \text{identity function}$
Generalized Linear Model (GLM)

\[g(E(Y_i)) = x_i^T \beta \]

\(i = 1, 2, \ldots, N \)

\(Y_i \): monthly N500 derived from HKO TC best track data
\(g \): natural log (canonical link)
\(\beta \): maximum likelihood estimators to be found by an iterative weighted least squares (IWLS) procedure
\(x_i = ??? \) (what predictors do we need?)
Predictors

- Variability of TC activity is governed by atmospheric and oceanic conditions
- The predictors should be able to describe the atmospheric and oceanic conditions well
- Physical variables predicted by global climate model are good candidates
NCEP CFS

- Climate Prediction Center, NOAA, USA: a WMO designated Global Producing Centre (GPC) of Long Range Forecasts
- CPC provides digital long range forecast and hindcast [generated by the NCEP Climate Forecast System]
- Hindcast data used in this study: 1981-2008
- 12-hourly data, need to calculate monthly means
NCEP CFS

- Physical variables: [a total of 26]
 - mslp, 2m temperature, precipitation rate, precipitable water, SST
 - 850 hPa u, v wind, gph, streamfunction, velocity potential
 - 700 hPa gph, 500 hPa gph
 - 200 hPa u, v wind, gph, streamfunction, velocity potential
 - vorticity, divergence, vertical wind shear, thickness
 [these are derived elements]

- 9-month lead time
Consideration of the spatial coverage of the physical variables

- We are forecasting N500, but we shouldn’t just look at a circle of 500 km in radius.
- We should consider a region where tropical cyclones develop, move and traverse toward HK
- A region where large-scale atmospheric circulations govern TC genesis and movement reside
- Also consider ENSO’s effect on TC activity, i.e. SST of equatorial Pacific
Spatial coverage of predictors used in regression

Atmospheric variables and SST
10S – 50N, 90E – 150W

Eq. Pacific SST:
15S – 15N, 150E – 80W
Hugh amount of data

- Horizontal resolution of data:
 - 1 lat. x 1 lon. for SST
 - 2.5 lat. x 2.5 lon. for other elements

- No. of data grid points = 1225 [for each element]

- Impossible to regress on 1225 x 26 predictors with just 28 years of observations

- Can the data be condensed or compressed?
Empirical Orthogonal Function Analysis

- Same as Principal Component Analysis (PCA)
- A powerful tool for data compression or dimensionality reduction in meteorology and oceanography
Example

- Suppose $x(t)$ is the time series (28 years) of 500 hPa gph (standardized anomaly) over the EOF analysis domain (i.e. 1225 points, or 1225-dimensional).

- After EOF analysis, $x(t) = \sum \alpha_i(t) e_i$

- where i runs from 1 to 28, e_i is the i^{th} EOF and α_i is the i^{th} principal component

- Note that e_i s are constant vectors (eigenvectors)

- Hence, 1225 data points are compressed into 28 principal components.

- The closer $x(t)$ resembles a particular e_i, the larger α_i is.

We work on 28 PCs instead of the 1225 data points.
Remark

- The eigenvectors are normally found by solving the eigenvalue problem of the covariance (or correlation) matrix.
- In our case, we have 1225 data grid points but the time series is only 28 years long.
- Eigenvalues starting from 29 are all zero.
- We have to use the singular value decomposition (SVD) method. Outcome: 28 EOFs

Selection of predictors and combinations

1. Fit a single predictor GLM, search for skilful single predictor

2. Fit a multiple predictor GLM [predictors from step 1], filter out redundant predictors by stepwise regression

Cross-validate the ‘reduced’ or simplified GLM [from step 2], search for top performers
A no-cost tool

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror.

If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.
The R software

1. To work on GLM:
 - model <- glm(y ~ x1 + x2 + x3 + x4, family=poisson)
 - model$coef gives the model parameters

2. To work on principal component analysis:
 - model <- prcomp(x)
 - predict(model) gives the PCs
 - model$rotation gives the eigenvectors
Generalized Linear Model (GLM) example

\[g(E(Y_i)) = x_i^T \beta \quad i = 1, 2, \ldots, 28 \]

*\(Y_i\): July N500 derived from HKO TC best track data

*\(g\): natural log (canonical link)

*\(\beta\): maximum likelihood estimators to be found by an iterative weighted least squares procedure

*\(x_i\): PCs of CFS July hindcasts (initial conditions dated at the end of June)
Selection of single predictors

1. No. of potential predictors = 26 x 28 = 728

2. Fit a single predictor GLM:
 ○ `glm(y~x, family=poisson)`

3. Search for skilful single predictor
 ○ `summary(glm(y~x, family=poisson))`
 ○ Check if the p-value of the estimated parameter for x is less than a certain threshold, e.g. 0.05
Summary of fitting glm

Call:
glm(formula = y ~ x, family = poisson)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.4386 -1.5282 -0.2943 1.2617 4.0834

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.23952 0.15424 33.969 <2e-16 ***
x -0.05273 0.00587 -8.983 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The small p-value indicates that x is likely a good predictor of y.
Selection of combinations of predictors

1. Fit a single predictor GLM, search for skilful single predictor

2. Fit a multiple predictor GLM [predictors from step 1]
 - glm(y~x1+x2+x3+x4, family=poisson)
 - No. of combinations > 2×10^8
 - Hence randomly select a limited no. of combinations
 - Max. no. of predictors = 6
 - Max. no. of combinations = 12000 (say)

The R Book suggests that the max no. of predictors should be no more than 1/3 of the data points (i.e. ~9 in this case).
Selection of combinations of predictors

1. Fit a single predictor GLM, search for skilful single predictor

2. (a) Fit a multiple predictor GLM with 6 predictors at most
 - glm(y~x1+x2+x3+x4+x5+x6, family=poisson)

2. (b) Filter out redundant predictors by stepwise regression (both backward and forward)
 - model<-glm(y~x1+x2+x3+x4+x5+x6, family=poisson)
 - stepAIC(model, direction=‘both’)

Selection of combinations of predictors

1. Fit a single predictor GLM, search for skilful single predictor

2. Fit a multiple predictor GLM, filter out redundant predictors by stepwise regression

Cross-validate the ‘reduced GLM’ [from step 2], search for top performers
Cross-validation of the regression model

1. Hide the observation of 1 year
2. Estimate the GLM parameter from the rest of the observations and the predictors
3. Verify the GLM forecast against the hidden observation
4. Rotate the process through 28 years

<table>
<thead>
<tr>
<th>Observation</th>
<th>Predictor 1</th>
<th>Predictor 2</th>
<th>Predictor 3</th>
<th>Predictor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecast Y1</td>
<td>Forecast Y2</td>
<td>Forecast ...</td>
<td>Forecast Y27</td>
<td>Forecast Y28</td>
</tr>
</tbody>
</table>
Verification

1. Round the GLM forecast to the nearest integer and take it as the count forecast [count forecast instead of a floating point number forecast will be issued in reality]

2. Sort the GLMs according to performance, i.e. no. of correct count forecast

3. Look for top performers
The mode is used as the climatology forecast, a benchmark for performance comparison.

<table>
<thead>
<tr>
<th>Month</th>
<th>Mode</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun</td>
<td>1</td>
<td>0.77</td>
</tr>
<tr>
<td>Jul</td>
<td>1</td>
<td>1.37</td>
</tr>
<tr>
<td>Aug</td>
<td>1</td>
<td>1.43</td>
</tr>
<tr>
<td>Sep</td>
<td>1</td>
<td>1.47</td>
</tr>
<tr>
<td>Oct</td>
<td>0</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Hindcast Vs Actual June N500, 1981-2008

Hindcast and Actual Jun N500 of HK

- Actual
- Top GLM
Hindcast Vs Actual July N500, 1981-2008

Hindcast and Actual July N500 of HK

- Actual
- Top GLM

Hindcast Vs Actual August N500, 1981-2008
Hindcast and Actual Sep N500 of HK

- Actual
- Top GLM
Hindcast Vs Actual October N500, 1981-2008

Hindcast and Actual Oct N500 of HK

- Actual
- Top GLM
Performance comparison
No. of correct count forecast in 1981-2008

<table>
<thead>
<tr>
<th></th>
<th>Climatology (mode) 1971-2000</th>
<th>Top GLM</th>
<th>Gain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun</td>
<td>14</td>
<td>24</td>
<td>71</td>
</tr>
<tr>
<td>Jul</td>
<td>16</td>
<td>23</td>
<td>44</td>
</tr>
<tr>
<td>Aug</td>
<td>15</td>
<td>22</td>
<td>47</td>
</tr>
<tr>
<td>Sep</td>
<td>14</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>Oct</td>
<td>16</td>
<td>25</td>
<td>56</td>
</tr>
</tbody>
</table>
Test for significance (permutation test)

1. Define $T = \text{No. of correct forecast by GLM} - \text{no. of correct forecast by climatology}$
2. Null hypothesis $H_0 : T$ is zero.
3. Alt. hypothesis $H_a : T$ is greater than zero.
4. Use `perm.test()`

<table>
<thead>
<tr>
<th>Month</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun</td>
<td>Reject H_0 at 5% significance level</td>
</tr>
<tr>
<td>Jul</td>
<td>Reject H_0 at 5% significance level</td>
</tr>
<tr>
<td>Aug</td>
<td>Reject H_0 at 5% significance level</td>
</tr>
<tr>
<td>Sep</td>
<td>Reject H_0 at 10% significance level</td>
</tr>
<tr>
<td>Oct</td>
<td>Reject H_0 at 5% significance level</td>
</tr>
</tbody>
</table>

Physical Interpretation

Negative mslp anomalies over the southern part of the South China Sea and seas near the Philippines favour TC formation.
Physical Interpretation

Positive SST anomalies favour TC genesis.
Physical Interpretation

Positive 500 hPa gph anomalies help to prevent TCs from re-curving to the northeast too early.

The 4th EOF of 500 hPa geopotential height of June
Physical Interpretation

Strong low level lateral shear over the northern part of the South China Sea favours TC development.

The 1st EOF of 850 hPa zonal wind of October
Physical Interpretation

Positive low level vorticity over the northern part of the South China Sea favour TC development.

The 1st EOF of 850 hPa vorticity of October
Multi-GLM combination – skill enhancement

- Weigel et al., 2008: Can Multi-model Combination Really Enhance the Prediction Skill of Probabilistic Ensemble Forecasts? *Quarterly Journal of the Royal Meteorological Society*

- A message with respect to deterministic forecasts: *combination of similarly skilful models can enhance prediction skill*
Multi-GLM combination – skill enhancement

- We have already sorted the GLMs according to performance
- The top performers are models of similar skill
- We obtain the multi-model combination by taking the mode of the GLM forecasts, i.e. a voting process

<table>
<thead>
<tr>
<th></th>
<th>GLM1</th>
<th>GLM2</th>
<th>GLM3</th>
<th>GLM4</th>
<th>GLM5</th>
<th>MMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1982</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Performance comparison

No. of correction forecast in 1981-2008

<table>
<thead>
<tr>
<th></th>
<th>Climatology (mode) 1971-2000</th>
<th>Top GLM</th>
<th>Multi-GLM (mode of top 20 GLM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun</td>
<td>14</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>Jul</td>
<td>16</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>Aug</td>
<td>15</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Sep</td>
<td>14</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Oct</td>
<td>16</td>
<td>25</td>
<td>28</td>
</tr>
</tbody>
</table>
Simulation to illustrate the MMC method

- Generate 30 years of artificial observations (random draws from a Poisson distribution with parameter \(\lambda \))
- Generate 1000 artificial models of the same skill \(\alpha \)
 - \(\alpha = 0 \) : 0% of 30 forecasts are correct
 - \(\alpha = 0.5 \) : 50% of 30 forecasts are correct
 - \(\alpha = 1 \) : 100% of 30 forecasts are correct
- Simulate the multi-model combination by taking the mode, i.e. a voting process among the artificial models
One simulation of 1000 artificial models (try $\lambda = 1$ and $\lambda = 2$)

1. Negative gain for combinations of unskilful models
2. Positive gain is possible for $\alpha \geq 0.5$
1000 simulations of 1000 artificial models consider the 20th MMC

1. Positive gain should generally be expected for $\alpha \geq 0.5$
Seasonal and annual forecast

- Consider CFS model runs initialized at the end of Feb
- Can produce forecast for the whole TC season of HK
- Two forecast periods: Apr-Jul, Aug-Nov
Hindcast and Actual Apr-Jul N500, 1981-2008
(CFS runs initialized at the end of Feb)
Hindcast and Actual Aug-Nov N500, 1981-2008
(CFS runs initialized at the end of Feb)
Performance comparison

No. of correction forecast during 1981-2008

<table>
<thead>
<tr>
<th></th>
<th>Climatology (mode) 1971-2000</th>
<th>Multi-GLM</th>
<th>Gain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr-Jun</td>
<td>12</td>
<td>21</td>
<td>75</td>
</tr>
<tr>
<td>Aug-Nov</td>
<td>7</td>
<td>23</td>
<td>229</td>
</tr>
</tbody>
</table>
Conclusion

- Monthly/seasonal/annual TC forecast can be formulated in terms of Poisson GLM
- Dynamical climate model (e.g. NCEP CFS) forecast data contain a lot of predictive information
- Further skill enhancement is made possible by multi-GLM combination
Remarks

- Too many predictors: the possibility of irrelevant predictors getting high scores by chance exists.
- The single predictors are found based on the whole dataset, hence the verification skill may have positive bias. The whole process of finding the predictors and regression equations should be cross-validated.
- Not all EOF can be easily interpreted.
- Better to verify the floating point forecast instead of the count forecast. Can use the floating point forecast and the associated probability distribution to deal with uncertainty.
A Major upgrade of CFS

- CFS will be upgraded on 18 Jan 2011
- A new set of hindcast will be produced
- Both spatial and temporal resolution of forecast and hindcast will increase
- More pressure levels in the vertical direction
- More forecast cycles per day
- Big jump in data volume
Acknowledgement:

The Hong Kong Observatory gratefully acknowledges NOAA/CPC for providing CFS forecast and hindcast data on the web to support research and seasonal forecasting operation conducted by the Observatory.