Satellite-Based Analysis in Tropical Cyclone Forecasting Uses of Dvorak, Microwave and Scatterometer

by

Roger T. Edson Science and Operations Officer NOAA/NWS WFO Guam, USA

UN/ESCAP/WMO Typhoon Committee 8th IWS/2nd TRCG Forum 2 – 6 December 2013 Macao Science Center, Macao, China **Satellite-based Analysis of Tropical Cyclone** Outside of the Atlantic Basin:

(No aircraft reconnaissance)

Primary means of evaluating tropical cyclones

--Synoptic data (scarce) --Radar (localized)

(still) Dominated by visual and infrared satellite imagery

Outline of Talk

What do you need from Satellite reconnaissance? --Position

- --Intensity/Change of Intensity
- --Structure
- --Genesis (plus dissipation)

**Need for more than one technique (e.g. IR Dvorak) to do a good analysis

Three views of Super Typhoon Podul <u>125–140kts</u>

Traditional Satellite Imagery **Use of Dvorak Satellite Intensity Technique (Infrared and Visual)

- Visual (higher resolution and animation)
 - Is the low level visible, obscured by clouds?
 - Eye or overshooting tops near an apparent center
 - Watch out for mid-trop circulations and outflow boundaries
- Infrared (24hr view, Temp at the top)
 - Good for well developed systems (no shear)
 - Very difficult in early stages, shear, multivortices, heavy mid-upper level clouds, etc etc etc.

What is the Dvorak Technique?

- A statistical method for <u>estimating</u> the intensity of tropical cyclones from satellite imagery
- Can use both Infrared and Visible imagery (maybe MI and SCAT can help)
- Based on a "measurement" of the cyclone's convective cloud pattern and a set of rules
 **This technique DOMINATES all others for identifying TC intensity (primarily the IR) in the TC Warning Centers

Dvorak Cloud Patterns

Dvorak Technique Cloud Patterns

DEVELOPMENTAL PATTERN TYPES	PRE STORM	TROPICAL (Minimal)	STORM (Strong)	HURRICA (Minimal)	NE PATTE (Strong)	RN TYPES (Super)
ran da Angela	T1.5 ±.5	T2.5	T3.5	T4.5	T5.5	T6.5 - T8
CURVED BAND PRIMARY PATTERN TYPE	D	D	\mathcal{D}		CFN BF15	
CURVED BAND EIR ONLY	ED?	Ð	G)	D	UTS De h	CFS by MF1
CDO PATTERN TYPE	I	Ö	Ð	(FA) JE IS	(F5)	UF 6 JF1
SHEAR PATTERN TYPE	13	Ď	D			

Dvorak MSSW Estimates versus Best Track Data when Recon Present 1997-2003 160 Dvorak (kt) Weakening Dvorak (kt) Strengthening 140 Dvorak Classification (kt) 0 0000 0 -120 00 00 0 0 0 CEL 0,00,000 00 00 0 00 COCOCOC 100 00 0 80 000 00 00 00 000 00000000000 0 o 60 -0 0 0 0000 0000 0 Weakening RMSE= 13.8 kt 00 40 Strengthening RMSE= 9.8 kt 0 0 20 60 120 40 80 100 160 20 140(ref: Frankl J. Best Track Wind Speed (kt)

Chip Guard's Summary of Why Dvorak Works Contains the basic ingredients to 'make' a Tropical Cyclone

• VORTICITY
• SHEAR
• CONVECTIVE VIGOR

Dvorak Technique (problem areas)

- From the late 70s
- Updates still based on initial premise
- Primary tool for intensity, outside of aircraft reconnaissance
- Often little ground truth to `correct'
- Many documented situations where Dvorak is suspect

THE DVORAK TECHNIQUE (Is there room for improvement?)

- Visual technique developed in mid 1970s
- IR technique developed in late 70s/ early 80s
 - Animation not part of technique—but since adapted for better positioning
 - Not designed for 'midget-type' TCs, 'Truck Tire eyes,
 - Not designed for TCs originating as monsoon depressions (i.e. large trough in sheared environment), ST & ET systems
 - Only "sees" clouds
 - Becoming `automated', but still takes a <u>real long</u> time to learn to do well
 - Embedded IR procedure has very large variability
- Ref: 2006 BAMS article, AMS Tropical Conf proceedings

Dvorak Technique

- Even when technique 'works', many errors
 - Easy to do, but difficult to do correctly
 - Many times junior forecaster/analyst (with little extensive experience...NEED 2 seasons, minimum)
 - Use of spiral band curvature <u>over used (easy)</u>
 - TC Forecaster is often not the satellite analyst
 - Requires communication and questioning for Forecaster to understand the difficulty
 - What is the forecaster's experience with Dvorak?

Positioning Difficulties (#1) <u>Cloud System Center</u>

Positioning Difficulties Spiral-Band Curvature IR

Embedded Center

(Difficult) -

or Vis

(Often

IR

- Look for a warm spot.
- Look toward the edge with the tightest temperature gradient.

Difficult)

- Use the LOG10 spiral overlay.
- Place it so the curve lies as close as possible to the connective bands.
- Follow the curve to the center.

Too much Spiral Band Curvature (SBC)

- Use a LOG10 spiral overlay.
- The spiral should lie along the axis of the of the band, and roughly parallel the inside edge of the band.
- Measure the arc length.

Do you remember this embedded IR Techniques (use with MI Multi-Coverage)

15 May 2326Z T2.5/3.5 - 55kt

Comparison between JTWC and JMA (non-agreement between TC centers)

- 1' vs. 10'
- Modification to high end scale (based on an observation study by Koba, et al. 1991)
- See T# correspondence (however, satellite interpretation of definition of T# is the <u>same</u>)

Comparison of Dvorak Intensities JTWC vs. JMA

(Conversion to 1

T Number	JTWC (1min)	JMA (10min) -	→0' to 1'
2	30	30	33.6
2.5	35	35	39.2
3	45	45	50.4
3.5	55	55	61.6
4	65	65	72.8
4.5	77	70	78.4
5	90	77	86.2
5.5	102	85	95.2
6	115	93	104.7
6.5	127	100	112.0
7	140	107	119.8
7.5	155	115	128.8
8	170	122	136.6

Mark Lander's 'Truck' Tires

08 AUG 0130Z

06 AUG 0230Z

Midgets

Eye-Wall Replacement Cycle

TY Usagi Rapidly Intensifying (RI) Lightning in Eye-Wall

Perhaps we need to (finally) add a Microwave Procedure?

ADVANTAGES OF USING 85 GHz AND 37 GHz Microwave Imagery

- Sees' through clouds
- Positioning of TCs in difficult situations (especially in EARLY stages of development)
- View of convective rain bands is more DIRECTLY related to intensification of the TC
- Less delay in seeing changes in intensification
- Lower altitude of TRMM/WindSAT has increased resolution in BOTH 85 and 37 GHz
- Can (should be) still use <u>in conjunction</u> with existing techniques (e.g. IR Dvorak and Scatterometer data)

Some times the 87 GHz Imagery is not enough: Where's the Eye of the Storm?

Another case for Using the 37 GHz: Eye Revealed

Use of Microwave and Dvorak

- Positioning is often superior to Vis/IR
- Problems
 - Frequency of passes (and correspondence to other data)
 - Resolution
 - Some interpretation
 - (still) No current intensity technique (partial by CIMSS, Univ of Wisconsin)

Where's the Center? Need help for Dvorak IR

Now, where's the Center? TMI 37 GHz**

val Research Laboratory http://www.nr1mry.navy.mi1/sat_products.ht <-- 37H GHz Brightness Temperature (Kelvin) -->

Comparison of Dvorak patterns with first 3 MI Stages in a TC Life Cycle

(Pre-Typhoon Francesco < = 25kts) 16 Sep 1200 – 2 days before 17 Sep 0600 - 1 day before 90W INVEST TRMM 85H GMS-5 IR /01 0600Z 90W INVEST /01 0635Z SSMI F-13 85H /01 0531Z GMS-5 VIS 09/16/01 1200Z 09/16/01 1254Z 09/16/01 1231Z 1.21 90W INVEST TRMM COMPOSITE37 GMS-5 IR 09/16/01 12002 09/16/01 12542 09/16/01 12312 90W INVEST SSMI F-13 COMPOSITE GMS-5 VIS ta 1.20 121

Research Laboratory http://www.nrlmry.navy.mil/sat_products Red=37PCP Green=37H Blue=37V

Research Laboratory http://www.nrlmry.navy.mil/sat_products Red=85PCT Green=85H Elue=85V

Stage 2 – Shear pattern (35kts)

Tropical Storm Erin (06L) 45kts-- Stage 2 03Sep1200

Possible ways to Supplement the Dvorak Analysis with Microwave Imagery

- Provide for an integrated positioning technique
- (spiral band curvature and shear)
- Precision in use of embedded IR technique
- TC life cycle supplement (in MI)
- Early genesis identification (pre-T#1)
- Identifying both potential 'rapid' and 'delayed' intensification scenarios ('MET')
- Identification of 'peaking' and 'MET' changes
- Intensities during Extratropical Transition and dissipation scenarios
- Integration with 'other' techniques, including use of AMSU, Scatterometer, AODT, etc..

EVALUATIONS OF CAT5/SUPER TYPHOONS (85h) VIEWS: Time changes in red inner eyes

TC Susan 70kt -26hr TC Susan 95kt -13hr TC Susan 120kt -06hr

STY Zeb 95kt -24hr

STY Zeb 140kt -00hr

3-views of Scatterometer

QUIKSCAT NRT Winds - created at Oct 26 00:42 GMT 2001 ascending

Ambiguity Solutions

Wind Vectors

QUIKSCAT NRT Winds - created at Oct 26 00:42 GMT 2001 ascending

Storm number: 26 Storm name: PODUL Note: 1) Times are GMT 2) Black barbs indicate possible rain contamination 3) Data buffer is Oct 26 00:42 GMT 2001-22 hrs 4) Data pass times at bottom of image

rm name: PODUL 2) Black barbs indicate possible ct 26 00:42 GMT 2001-22 hrs 4 σ_oV-pol forward

. 05.347.418.25 USA1 14.000 Some Remark(0.5. Some Remark(0.5. 160

Scatterometer Platforms

	ASCAT Metop A: 2006-	OSCAT Oceansat-2: 2009-	QuikSCAT 1999 - 2009
Frequency	5.3 GHz (C)	13.5 GHz (Ku)	13.4 GHz (Ku)
Geometry	6 Fan Beams	2 Rotating Pencil	2 Rotating Pencil
Polarization	VV	HH inner / VV outer	HH inner / VV outer
Altitude	817 km	720 km	803 km
Sun-Sync Orbit / Repeat	101 min / 29 days	99 min / 2 days	101 min / 4 days
Incidence Angles	25° – 53° 34° – 64°	49° / 57°	46º / 54º
Swath	550km 700km-gap 550km	1400 km / 1836 km	1400 km / 1800 km
to Launch	**Meton B: 2012	0 2016	?

Scatterometer Sites NOAA/NESDIS

http://manati.star.nesdis.noaa.gov/datasets/OSCATData.php

Scatterometer Sites NOAA/NESDIS Storm Pages (ASCAT and OSCAT)

6	SIL	15.0
1	sp.	CORP
E.	12	20
12	SINCO	J
-	Arer	N.

Ocean Surface Winds Team

National Environmental Satellite, Data, and Information Service (NESDIS)

NOAA | NESDIS | STAR | SOCD

OSWT Home | Product Description | Data Products | Research | Contact US

Scatterometer Sites: KNMI

http://www.knmi.nl/scatterometer/ascat_osi_25_prod/asc

Uses of Scatterometer data over Tropical Cyclones (GOALS)

- Positioning and Motion
- Minimum (at least) maximum wind
- Structure and Structure Change (Wind Radii)
- Genesis and (Surface) Genesis processes
- Extratropical Transition and Dissipation

Note: 1) Times are GMT 2)Times along bottom correspond to measurement at 15N 3)Data buffer is 22 hrs from Aug 4 04:10 UTC 2007 4) Black circles indicate passible contamination NOA4/NESDIS/Office of Research and Applications

RAIN EFFECTS-Direction selection problem (Rain Blocks--Perpendicular to Swath)

The "Rain Block"

Watch out for "False Center"!

Bad direction *selection*—Speeds are 'good'.

STY Podul (26W) 25 Oct 1921Z Psn: 21N 153.8E est Int: 140kt

24

20

16

Ascending Swath Co y-poi (forward)

dark spot

Along-track Bright Nodes

Swath Scan

0

Cross-track Dark Band

nter

XT

1

31Aug0214 IR

angent this cancel drong on thing

Hur Fabian (10 L) ~17.5N 49.9W 105kt

Streamlines shifted westward

Doesn't the scatterometer always read to high?

Scatterometer Winds over the Ocean (up to 100 kt!)

Structure—ASCAT-B

Naval Research Laboratory http://www.nrlmry.navy.mil/sat_products.html METOP-B ASCAT (ASCAT) Vectors (knots)

Scatterometer shows development just like the IR

12:20 12:26 imber: 04 – Storm name: FOUR Times are GMT 2) Times along bottom correspond to measurement at 14N Data buffer (s 22 hrs from May 31 20:30 UTC 2012 4) Black Circles indicate possible contamination

Storm number: 04 Storm name: MAWAR Note: 1) Times are GMT 2) Times along bottom correspond to measurement at IBN 3) Data buffer is 22 hrs from Jun 3 01:30 LTO 2012 4) Black Circles indicate possil

TD developing from Monsoon Circulation 16W (Man-yi) Image: Distance of the second se

Neval Research Laboratory http://www.nrimry.nevy.mil/sat_products.html

TD developing from Monsoon Circulation 16W (Man-yi) OSCAT winds and TRMM 85h

0 2 4 6 8 10 12 14 16 18 20 22 74 26 28 30 32 34 36 38 40 42 44 46 47 36 32 54 56 54

TD developing from Monsoon Circulation 16W (Man-yi)

TD developing from Monsoon Circulation 16W (Man-yi)

BYU OSCAT UHR Mean Sigma-0

TC Centers and TC Forecasters

IR Dvorak CANNOT (should not) work by itself

Only an integrated/combined satellite analysis will improve TC Analysis (and Forecasting)

Now is the time: Don't be 'low' and 'slow'

Questions?

EXTRA Slides for Reference

Positioning and Structure

<u>Overlay</u> QuikSCAT winds and ambiguities over MI - 37Ghz imagery

Advantages of 85 GHz

- 1. Identify peripheral low-level cloud bands, giving information about center of circulation.
- 2. Distinguish deep (cold) convection (heavy precipitation) from lightly-raining (warm) low cloud features.
- 3. Identify cirrus-covered eyes.
- 4. High Spatial Resolution

Limitations of 85 GHz

- 1. Cold Ocean may "look like" deep convection: Use 85 GHz Color Composite as a correction.
- 2. Parallax Error (10-20 km).
- **3.** Saturates (no detail) in storm cores, misses structure.

Advantages of 37 GHz

- 1. Identify cirrus-covered eyes.
- 2. Resolve detail within the storm core missed by 85 GHz, sometimes can see eyes missed by 85 GHz.
- **3. Shows regions of low-level clouds/rain.**
- 4. Little Parallax error compared to 85 GHz.

Limitations of 37 GHz

- 1. Does not show distinguish convection from low clouds bands. Eyes are sometimes poorly defined or not detectable. False eyes are common*.
- 2. Suffers from poor spatial resolution on SSM/I, SSM/IS, better on TMI, WindSAT and AMSR-E
- 3. Not available on AMSU-B

Tropical Cyclone Lifecycle in Microwave Imagery

- I. TC Genesis Stage ~25-30kt
- II. Early Intensification and Development~30-45kt
- **III.** Continued Intensification and Mature Stage
- IV. Peaking and Initial Weakening Stage
- V. Dissipation and Extratropical Transition

The Beginning?....no classification

Pattern 'C': LLCC present and convection < 250 K forms hooks, claws or broken rings: AVG INTENSITY = 57 kts

